Journal of Systems Science and Complexity

, Volume 20, Issue 3, pp 470–478 | Cite as

On Fuzzy h-Ideals of Hemirings

  • Xueling Ma
  • Jianming ZhanEmail author


The concept of quasi-coincidence of a fuzzy interval value in an interval valued fuzzy set is considered. In fact, this concept is a generalized concept of the quasi-coincidence of a fuzzy point in a fuzzy set. By using this new concept, the authors define the notion of interval valued (\(\in, \in \vee q\))-fuzzy h-ideals of hemirings and study their related properties. In addition, the authors also extend the concept of a fuzzy subgroup with thresholds to the concept of an interval valued fuzzy h-ideal with thresholds in hemirings.


Hemirings h-ideals interval valued (\(\in, \in \vee q\))-fuzzy h-ideals interval valued fuzzy h-ideals with thresholds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Zadeh, Fuzzy sets, Inform. Control, 1965, 8(1): 338–353.CrossRefGoogle Scholar
  2. 2.
    A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 1971, 35(2): 512–517.CrossRefGoogle Scholar
  3. 3.
    J. N. Mordeson and M. S. Malik, Fuzzy Commutative Algebra, World Publishing, Singapore, 1998.Google Scholar
  4. 4.
    L. A. Zadeh, The concept of a linguistic variable and its application to approximate reason, Inform. Control, 1975, 18(2): 199–249.Google Scholar
  5. 5.
    R. Biswas, Rosenfeld’s fuzzy subgroups with interval valued membership functions, Fuzzy Sets Syst., 1994, 63(1): 87–90.CrossRefGoogle Scholar
  6. 6.
    S. K. Bhakat and P. Das, (\(\in, \in \vee q\))-fuzzy subgroups, Fuzzy Sets Syst., 1996, 80(3): 359–368.CrossRefGoogle Scholar
  7. 7.
    P. M. Pu and Y.M. Liu, Fuzzy topology I: Neighourhood struture of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 1980, 76(2): 571–599.CrossRefGoogle Scholar
  8. 8.
    S. K. Bhakat, (\(\in, \in \vee q\))-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets Syst., 2000, 112(2): 299–312.CrossRefGoogle Scholar
  9. 9.
    S. K. Bhakat, (\(\in, \in \vee q\))-level subsets, Fuzzy Sets Syst., 1999, 103(3): 529–533.CrossRefGoogle Scholar
  10. 10.
    S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets Syst., 1992, 51(2): 235–241.CrossRefGoogle Scholar
  11. 11.
    S. K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets Syst., 1996, 81(3): 383–393.CrossRefGoogle Scholar
  12. 12.
    X. H. Yuan, C. Zhang , and Y. H. Ren, Generalized fuzzy groups and many valued applications, Fuzzy Sets Syst., 2003, 138(1): 205–211.CrossRefGoogle Scholar
  13. 13.
    A. W. Aho and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading, MA, 1979.Google Scholar
  14. 14.
    K. Glazek, A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences: With Complete Bibliography, Kluwer Acad. Publ., Dodrecht, 2002.Google Scholar
  15. 15.
    W. Wechler, The Concept of Fuzziness in Automata and Language Theory, Akademie-Verlag, Berlin, 1978.Google Scholar
  16. 16.
    M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 1958, 6(1): 321.Google Scholar
  17. 17.
    Iizuka K. (1959). On the Jacobson radical of a semiring. Tohuku Math. J. 11(2): 409–421Google Scholar
  18. 18.
    D. R. La Torre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen, 1965, 12(2): 219–226.Google Scholar
  19. 19.
    J. M. Zhan and W. A. Dudek, Fuzzy h-ideals of hemirings, Inform. Sci., 2007, 117(3): 876–886.CrossRefGoogle Scholar
  20. 20.
    S. I. Baik and H. S. Kim, On fuzzy k-ideals in semirings, Kangweon-Kyunki Math. J., 2000, 8(2): 147–154.Google Scholar
  21. 21.
    S. Ghosh, Fuzzy k-ideals of semirings, Fuzzy Sets Syst., 1998, 95(1): 103–108.CrossRefGoogle Scholar
  22. 22.
    D. S. Malik and J. N. Mordeson, Extensions of fuzzy subrings and fuzzy ideals, Fuzzy Sets Syst., 1992, 45(2): 245–251.CrossRefGoogle Scholar
  23. 23.
    T. K. Mukherjee and M. K. Sen, Prime fuzzy ideals in rings, Fuzzy Sets Syst., 1989, 32(3): 337–341.CrossRefGoogle Scholar
  24. 24.
    J. M. Zhan, On properties of fuzzy left h-ideals in hemirings with t-norms, Int. J. Math. Math. Sci., 2005, 2005(19): 3127–3144.CrossRefGoogle Scholar
  25. 25.
    J. M. Zhan and Z. S. Tan, T-fuzzy k-ideals of semirings, Sci. Math. Japan., 2003, 58(3): 597–601.Google Scholar
  26. 26.
    J. M. Zhan and K. P. Shum, Intuitionistic (S,T)-fuzzy h-ideals of hemirings, East Asian Math. J., 2006, 22(1): 93–109.Google Scholar
  27. 27.
    J. M. Zhan and K. P. Shum, Intuitionistic M-fuzzy h-ideals of hemirings, J. Fuzzy Math., 2006, 14(4): 929–945.Google Scholar
  28. 28.
    J. M. Zhan and B. Davvaz, L-fuzzy h-ideals with operators in hemirings, Northeast Math. J., 2007, 23(1): 1–14.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsHubei Institute for NationalitiesEnshiChina

Personalised recommendations