Advertisement

Journal of Systems Science and Complexity

, Volume 20, Issue 3, pp 461–469 | Cite as

A Note on the Stability of a Class of Degenerate Planar Critical Points

  • Tusen HuangEmail author
  • Qi Zhang
Article
  • 39 Downloads

Abstract

A computable expression of the asymptotic expansion of the return map for a degenerate singular point of a class of planar differential system is given, and hence the stability and the type of the singular point can be decided. These results generalize the corresponding results in [Nonlinearity, 13 (2000), p.709].

Keywords

Isolated singular point monodromy singular point characteristic direction return map stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gasull, J. Llíbre, V. Mañosa, and F. Mañosas, The focus-centre problem for a type of degenerate system, Nonlinearity, 2000, 13: 699–729.CrossRefGoogle Scholar
  2. 2.
    A. Gasull, V. Mañosa, and F. Mañosas, Monodromy and stability of a class of degenerate planar critical points, J. Differential Equations, 2002, 182: 169–190.CrossRefGoogle Scholar
  3. 3.
    R. Moussu, Symétrie et forme normale des centres et foyers dégénérés, Ergodic Theory Dynam. Systems, 1982, 2: 241–251.CrossRefGoogle Scholar
  4. 4.
    A. Andreev, Investigation of the behavior of the integral curves of a system of two differential equations in the neighborhood of a singular point, Trans. Amer. Math. Soc., 1958, 8: 187–207.Google Scholar
  5. 5.
    Z. F. Zhang, T. R. Ding, W. Z. Huang, and Z. X. Dong, Qualitative Theory of Differential Equations (in Chinese), Scientific Press, Beijing, 1985.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of MathematicsZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Department of MathematicsNanjing UniversityNanjingChina

Personalised recommendations