Advertisement

Journal of Systems Science and Complexity

, Volume 20, Issue 3, pp 429–436 | Cite as

Construction of a New Class of Orthogonal Arrays

  • Shanqi PangEmail author
Article

Abstract

By using the generalized Hadamard product, difference matrix and projection matrices, we present a class of orthogonal projection matrices and related orthogonal arrays of strength two. A new class of orthogonal arrays are constructed.

Keywords

Difference matrix mixed-level orthogonal array permutation projection matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications, Springer, New York, 1999.Google Scholar
  2. 2.
    R. C. Bose and K. A. Bush, Orthogonal arrays of strength two and three, Ann. Math. Stat., 1952, 23(4): 508–524.Google Scholar
  3. 3.
    C. F. J. Wu, R. Zhang, and R. Wang, Construction of asymmetrical orthogonal array of the type OA\((s^{k},s^{m}(s_{1}^{r})^{n_1}\cdots (s_{t}^{r})^{n_t})\) , Statist. Sinica, 1992, 2(1): 203–219.Google Scholar
  4. 4.
    J. C. Wang, Mixed difference matrices and the construction of orthogonal arrays, Statist. Probab. Lett., 1996, 28: 121–126.CrossRefGoogle Scholar
  5. 5.
    S. Q. Pang, Y. S. Zhang, and S. Y. Liu, Further results on the orthogonal arrays obtained by generalized Hadamard product, Statist. Probab. Lett., 2004, 69(1): 431–437.CrossRefGoogle Scholar
  6. 6.
    C. Y. Suen and W. F. Kuhfeld, On the construction of mixed orthogonal arrays of strength two, J. Statist. Plann. Inference, 2005, 133(2): 555–560.CrossRefGoogle Scholar
  7. 7.
    Y. S. Zhang, S. Q. Pang, and Y. P. Wang, Orthogonal arrays obtained by the generalized Hadamard product, Discrete Mathematics, 2001, 238: 151–170.CrossRefGoogle Scholar
  8. 8.
    Y. S. Zhang, Y. Q. Lu, and S. Q. Pang, Orthogonal arrays obtained by orthogonal decomposition of projection matrices, Statist. Sinica, 1999, 9(2): 595–604.Google Scholar
  9. 9.
    S. Q. Pang, S. Y. Liu, and Y. S. Zhang, A note on orthogonal arrays obtained by orthogonal decomposition of projection matrices, Statist. Probab. Lett., 2003, 63(4): 411–416.CrossRefGoogle Scholar
  10. 10.
    J. C. Wang and C. F. J. Wu, An approach to the construction of asymmetrical orthogonal arrays, J. Amer. Statist. Assoc., 1991, 86: 450–456.CrossRefGoogle Scholar
  11. 11.
    W. F. Kuhfeld and C. Y. Suen, Some new orthogonal arrays OA\( (4r,r^{1}2^p,2)\) , Statist. Probab. Lett., 2005, 75(3): 169–178.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsHenan Normal UniversityXinxiangChina

Personalised recommendations