Skip to main content
Log in

Extended Casimir Approach to Controlled Hamiltonian Systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, we first propose an extended Casimir method for energy-shaping. Then it is used to solve some control problems of Hamiltonian systems. To solve the H control problem, the energy function of a Hamiltonian system is shaped to such a form that could be a candidate solution of HJI inequality. Next, the energy function is shaped as a candidate of control ISS-Lyapunov function, and then the input-to-state stabilization of port-controlled Hamiltonian systems is achieved. Some easily verifiable sufficient conditions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cheng, A. Astolfi, and R. Ortega, On feedback equivalence to port controlled Hamiltonian systems, Systems & Control Letters, 2005, 54: 911–917.

    Article  Google Scholar 

  2. D. Cheng, Z. Xi, Q. Lu, and S. Mei, Geometric struture of generalized controlled Hamiltonian systems ans its application, Science in China, 2000, 43(4): 365–379.

    Article  Google Scholar 

  3. Y. Wang, C. Li, and D. Cheng, Generalized Hamiltonian realization of time-invariant nonlinear systems, Automatica, 2003, 39(8): 1437–1443.

    Article  Google Scholar 

  4. Y. Wang, D. Cheng, and X. Hu, Problems on time-varying port-controlled Hamiltonian systems: geometric structure and dissipative realization, Automatica, 2005, 41(4): 717–723.

    Article  Google Scholar 

  5. A. J. van der Schaft, L 2 -Gain and Passivity Techniques in Nonlinear Control, Berlin, Springer, 1999.

    Google Scholar 

  6. A. J. van der Schaft, L 2 gain analysis of nonlinear systems and nonlinear H∞ control, IEEE Transactions on Automatical Control, 1992, 37: 770–784.

    Article  Google Scholar 

  7. B. Maschke, R. Ortega, and A. J. van der Schaft, Energy-shaping Lyapunov functions for forced Hamiltonian systems with dissipation, IEEE Transactions on Automatical Control, 2000, 45(8): 1498–1502.

    Article  Google Scholar 

  8. R., Ortega, A. van der Schaft, Bernhard Maschke, and Gerardo Escobar, Energy-shaping of port-controlled Hamiltonian systems by interconnection, Proceeding of the 38th Conference on Decision and Control, Phoenix, Arizona USA, December 1999, 1646–1651.

  9. R. Ortega, A. van der Schaft, B. Maschke, and G. Escobar, Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems, Automatica, 2002, 38(4): 585–596.

    Article  Google Scholar 

  10. D. Cheng and S. Spurgeon, Stabilization of Hamiltonian systems with dissipation, Int. J. Control, 2001, 74(5): 465–473.

    Article  Google Scholar 

  11. Z. Xi and D. Cheng, Passivity-based stabilization and H control of the Hamiltonian control systems with dissipation and its application to power systems, Int. J. Control, 2000, 73(18): 1686–1691.

    Article  Google Scholar 

  12. T. Shen, R. Ortega, Q. Lu, S. Mei, and K. Tamura, Adaptive L 2 disturbance attenuation of Hamiltonian systems with parametric perturbations and application to power systems, Asian J. Control, 2003, 5(1): 143–152.

    Google Scholar 

  13. Z. Xi, G. Feng, D. Cheng, and Q. Lu, Nonlinear decentralized saturated controller design for power systems, IEEE Trans. on Control Systems Technology, 2003, 11(4): 539–547.

    Article  Google Scholar 

  14. Y. Wang, D. Cheng, C. Li, and Y. Ge, Dissipative Hamiltonian realization and energy-based L 2-disturbance attenuation control of multimachine power systems, IEEE Transactions on Automatical Control, 2003, 48(8): 1428–1433.

    Article  Google Scholar 

  15. R. Ortega, M. Galaz, A. Astolfi, Y. sun, and T. Shen, Transient stabilization of multomachine power systems with nontrivial transfer conductances, IEEE Transactions on Automatical Control, 2005, 50(1): 60–75.

    Article  Google Scholar 

  16. Z. Xi, D. Cheng, Q. Lu, and S. Mei, Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method, Automatica, 2002, 38(3): 527–534.

    Article  Google Scholar 

  17. A. Isidori, Nonlinear Control Systems II, Springer-Verlag, London, 1999.

    Google Scholar 

  18. E. D. Sontag, On the input-to-state stability property, European J. Contr., 1995, 1: 24–36.

    Google Scholar 

  19. E. D. Sontag and A. Teel, Changing supply functions in input/state stable systems, IEEE Transactions on Automatical Control, 1995, 40: 1476–1478.

    Article  Google Scholar 

  20. E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Systems & Control Letters, 1995, 24: 351–359.

    Article  Google Scholar 

  21. H. K. Khalil, Nonlinear Systems (Third Edition), Prentice Hall, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqian Guo.

Additional information

Supported by the National Natural Science Foundation of China under Grants 60221301 and 60334040.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Cheng, D. Extended Casimir Approach to Controlled Hamiltonian Systems. Jrl Syst Sci & Complex 19, 211–218 (2006). https://doi.org/10.1007/s11424-006-0211-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-006-0211-4

Key Word

Navigation