Skip to main content

Advertisement

Log in

Simultaneous determination of selegiline, desmethylselegiline, R/S-methamphetamine, and R/S-amphetamine in oral fluid by LC/MS/MS

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

It is crucial for forensic analysis to differentiate clinical use from illegal abuse. Selegiline (SG) is mainly metabolized to desmethylselegiline (DM-SG), R-(−)-methamphetamine (R-MA) and R-(−)amphetamine (R-AM); while abused methamphetamine and amphetamine mainly contain the S-(+)-form. The aim of this study was to simultaneously determine SG, DM-SG, R/S-MA, and R/S-AM in human oral fluid (OF) and to differentiate clinical use from illegal use. We also aim to apply the present method to the OF samples from authentic cases in forensic toxicology.

Methods

Liquid–liquid extraction and liquid chromatography-tandem mass spectrometry operating in positive ion multiple-reaction monitoring mode were utilized. The chromatographic system consisted of a ChirobioticTM V2 column (2.1 mm × 250 mm, 5 μm) and a mobile phase of methanol containing 0.1% (v/v) glacial acetic acid and 0.02% (v/v) ammonium hydroxide.

Results and conclusions

The calibration curves were linear from 1 to 100 ng/mL, and r > 0.995 for all analytes with imprecisions ≤ 15% and accuracy between 85 and 115%. Extraction recoveries ranged from 46.3 to 104.7% with coefficient of variation (CV) ≤ 10.3% and matrix effects (MEs) ranged from 47.4 to 114.8% with CV ≤ 12.9%. The lower limit of quantification was 0.2 ng/mL for SG and DM-SG and 1.0 ng/mL for S-MA, R-MA, S-AM and R-AM. The present method is simple, rapid (accomplished in 12 min), sensitive, and validated by authentic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cone EJ, Huestis MA (2007) Interpretation of oral fluid tests for drugs of abuse. Ann N Y Acad Sci 1098:51–103. https://doi.org/10.1196/annals.1384.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bosker WM, Huestis MA (2009) Oral fluid testing for drugs of abuse. Clin Chem 55(11):1910–1931. https://doi.org/10.1373/clinchem.2008.108670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heltsley R, DePriest A, Black DL, Robert T, Marshall L, Meadors VM, Caplan YH, Cone EJ (2011) Oral fluid drug testing of chronic pain patients. I. Positive prevalence rates of licit and illicit drugs. J Anal Toxicol 35(8):529–540

    Article  CAS  PubMed  Google Scholar 

  4. Chu M, Gerostamoulos D, Beyer J, Rodda L, Boorman M, Drummer OH (2012) The incidence of drugs of impairment in oral fluid from random roadside testing. Forensic Sci Int 215(1–3):28–31. https://doi.org/10.1016/j.forsciint.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  5. Bush DM (2008) The US mandatory guidelines for federal workplace drug testing programs: current status and future considerations. Forensic Sci Int 174(2–3):111–119. https://doi.org/10.1016/j.forsciint.2007.03.008

    Article  PubMed  Google Scholar 

  6. Huestis MA, Cone EJ (2004) Relationship of Delta 9-tetrahydrocannabinol concentrations in oral fluid and plasma after controlled administration of smoked cannabis. J Anal Toxicol 28(6):394–399

    Article  CAS  PubMed  Google Scholar 

  7. Mohamed KM, Al-Hazmi AH, Alasiri AM, Ali Mel S (2016) A GC-MS Method for Detection and Quantification of Cathine, Cathinone, Methcathinone and Ephedrine in Oral Fluid. J Chromatogr Sci 54(8):1271–1276. https://doi.org/10.1093/chromsci/bmw082

    Article  CAS  PubMed  Google Scholar 

  8. Newmeyer MN, Concheiro M, da Costa JL, Flegel R, Gorelick DA, Huestis MA (2015) Oral fluid with three modes of collection and plasma methamphetamine and amphetamine enantiomer concentrations after controlled intranasal l-methamphetamine administration. Drug Test Anal 7(10):877–883. https://doi.org/10.1002/dta.1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clarke A, Brewer F, Johnson ES, Mallard N, Hartig F, Taylor S, Corn TH (2003) A new formulation of selegiline: improved bioavailability and selectivity for MAO-B inhibition. J Neural Transm (Vienna) 110(11):1241–1255. https://doi.org/10.1007/s00702-003-0036-4

    Article  CAS  Google Scholar 

  10. Katagi M, Tatsuno M, Miki A, Nishikawa M, Nakajima K, Tsuchihashi H (2001) Simultaneous determination of selegiline-N-oxide, a new indicator for selegiline administration, and other metabolites in urine by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr B Biomed Sci Appl 759(1):125–133

    Article  CAS  PubMed  Google Scholar 

  11. Salonen JS, Nyman L, Boobis AR, Edwards RJ, Watts P, Lake BG, Price RJ, Renwick AB, Gomez-Lechon MJ, Castell JV, Ingelman-Sundberg M, Hidestrand M, Guillouzo A, Corcos L, Goldfarb PS, Lewis DF, Taavitsainen P, Pelkonen O (2003) Comparative studies on the cytochrome p450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems. Drug Metab Dispos 31(9):1093–1102. https://doi.org/10.1124/dmd.31.9.1093

    Article  CAS  PubMed  Google Scholar 

  12. Siu EC, Tyndale RF (2008) Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther 324(3):992–999. https://doi.org/10.1124/jpet.107.133900

    Article  CAS  PubMed  Google Scholar 

  13. Wurita A, Hasegawa K, Minakata K, Gonmori K, Nozawa H, Yamagishi I, Suzuki O, Watanabe K (2016) Postmortem redistribution of methamphetamine and amphetamine in blood specimens from various blood vessels and in the specimens from pericardial fluid, bile, stomach contents and various solid tissues collected from a human cadaver. Forensic Toxicol 34(1):191–198. https://doi.org/10.1007/s11419-015-0303-8

    Article  CAS  Google Scholar 

  14. Makino Y, Suzuki A, Ogawa T, Shirota O (1999) Direct determination of methamphetamine enantiomers in urine by liquid chromatography with a strong cation-exchange precolumn and phenyl-beta-cyclodextrin-bonded semi-microcolumn. J Chromatogr B Biomed Sci Appl 729(1–2):97–101

    Article  CAS  PubMed  Google Scholar 

  15. Maurer HH, Kraemer T (1992) Toxicological detection of selegiline and its metabolites in urine using fluorescence polarization immunoassay (FPIA) and gas chromatography-mass spectrometry (GC-MS) and differentiation by enantioselective GC-MS of the intake of selegiline from abuse of methamphetamine or amphetamine. Arch Toxicol 66(9):675–678

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Hao B, Shi Y, Xue L, Wang X, Chen Y, Zhao H (2017) Violent offences of methamphetamine users and dilemmas of forensic psychiatric assessment. Forensic Sci Res 2(1):11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reimer ML, Mamer OA, Zavitsanos AP, Siddiqui AW, Dadgar D (1993) Determination of amphetamine, methamphetamine and desmethyldeprenyl in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry. Biol Mass Spectrom 22(4):235–242. https://doi.org/10.1002/bms.1200220404

    Article  CAS  PubMed  Google Scholar 

  18. Heinonen EH, Anttila MI, Lammintausta RA (1994) Pharmacokinetic aspects of l-deprenyl (selegiline) and its metabolites. Clin Pharmacol Ther 56(6 Pt 2):742–749

    Article  CAS  PubMed  Google Scholar 

  19. Esposito FM, Crumpton S, Mitchell J, Flegel RR (2012) Evaluation of the 20% D-methamphetamine requirement for determining illicit use of methamphetamine in urine. J Anal Toxicol 36(6):399–404. https://doi.org/10.1093/jat/bks042

    Article  CAS  PubMed  Google Scholar 

  20. Mohr S, Weiss JA, Spreitz J, Schmid MG (2012) Chiral separation of new cathinone- and amphetamine-related designer drugs by gas chromatography-mass spectrometry using trifluoroacetyl-l-prolyl chloride as chiral derivatization reagent. J Chromatogr A 1269:352–359. https://doi.org/10.1016/j.chroma.2012.09.079

    Article  CAS  PubMed  Google Scholar 

  21. Segawa H, Iwata YT, Yamamuro T, Kuwayama K, Tsujikawa K, Kanamori T, Inoue H (2017) Enantioseparation of methamphetamine by supercritical fluid chromatography with cellulose-based packed column. Forensic Sci Int 273:39–44. https://doi.org/10.1016/j.forsciint.2017.01.025

    Article  CAS  PubMed  Google Scholar 

  22. Sevcik J, Stransky Z, Ingelse BA, Lemr K (1996) Capillary electrophoretic enantioseparation of selegiline, methamphetamine and ephedrine using a neutral beta-cyclodextrin epichlorhydrin polymer. J Pharm Biomed Anal 14(8–10):1089–1094

    Article  CAS  PubMed  Google Scholar 

  23. Weiss JA, Kadkhodaei K, Schmid MG (2017) Indirect chiral separation of 8 novel amphetamine derivatives as potential new psychoactive compounds by GC-MS and HPLC. Sci Justice 57(1):6–12. https://doi.org/10.1016/j.scijus.2016.08.007

    Article  PubMed  Google Scholar 

  24. Hadener M, Bruni PS, Weinmann W, Frubis M, Konig S (2017) Accelerated quantification of amphetamine enantiomers in human urine using chiral liquid chromatography and on-line column-switching coupled with tandem mass spectrometry. Anal Bioanal Chem 409(5):1291–1300. https://doi.org/10.1007/s00216-016-0056-1

    Article  CAS  PubMed  Google Scholar 

  25. Wang T, Shen B, Shi Y, Xiang P, Yu Z (2015) Chiral separation and determination of R/S-methamphetamine and its metabolite R/S-amphetamine in urine using LC-MS/MS. Forensic Sci Int 246:72–78. https://doi.org/10.1016/j.forsciint.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  26. Kronstrand R, Ahlner J, Dizdar N, Larson G (2003) Quantitative analysis of desmethylselegiline, methamphetamine, and amphetamine in hair and plasma from Parkinson patients on long-term selegiline medication. J Anal Toxicol 27(3):135–141

    Article  CAS  PubMed  Google Scholar 

  27. Nishida K, Itoh S, Inoue N, Kudo K, Ikeda N (2006) High-performance liquid chromatographic-mass spectrometric determination of methamphetamine and amphetamine enantiomers, desmethylselegiline and selegiline, in hair samples of long-term methamphetamine abusers or selegiline users. J Anal Toxicol 30(4):232–237

    Article  CAS  PubMed  Google Scholar 

  28. Leis HJ, Fauler G, Windischhofer W (2014) Enantioselective quantitative analysis of amphetamine in human plasma by liquid chromatography/high-resolution mass spectrometry. Anal Bioanal Chem 406(18):4473–4480. https://doi.org/10.1007/s00216-014-7850-4

    Article  CAS  PubMed  Google Scholar 

  29. Borg D, Kolb E, Lantigua C, Stripp R (2018) Chiral analysis of methamphetamine in oral fluid samples: a method to distinguish licit from illicit drug use. J Anal Toxicol 42(1):25–32. https://doi.org/10.1093/jat/bkx079

    Article  CAS  PubMed  Google Scholar 

  30. Newmeyer MN, Concheiro M, Huestis MA (2014) Rapid quantitative chiral amphetamines liquid chromatography-tandem mass spectrometry: method in plasma and oral fluid with a cost-effective chiral derivatizing reagent. J Chromatogr A 1358:68–74. https://doi.org/10.1016/j.chroma.2014.06.096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malakova J, Pavek P, Svecova L, Jokesova I, Zivny P, Palicka V (2009) New high-performance liquid chromatography method for the determination of (R)-warfarin and (S)-warfarin using chiral separation on a glycopeptide-based stationary phase. J Chromatogr B Analyt Technol Biomed Life Sci 877(27):3226–3230. https://doi.org/10.1016/j.jchromb.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  32. Alyamani M, Li Z, Upadhyay SK, Anderson DJ, Auchus RJ, Sharifi N (2017) Development and validation of a novel LC-MS/MS method for simultaneous determination of abiraterone and its seven steroidal metabolites in human serum: innovation in separation of diastereoisomers without use of a chiral column. J Steroid Biochem Mol Biol 172:231–239. https://doi.org/10.1016/j.jsbmb.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  33. Yu J, Tang J, Yuan X, Guo X, Zhao L (2017) Evaluation of the chiral recognition properties and the column performances of three chiral stationary phases based on cellulose for the enantioseparation of six dihydropyridines by high-performance liquid chromatography. Chirality 29(3–4):147–154. https://doi.org/10.1002/chir.22690

    Article  CAS  PubMed  Google Scholar 

  34. Ribeiro AR, Maia AS, Cass QB, Tiritan ME (2014) Enantioseparation of chiral pharmaceuticals in biomedical and environmental analyses by liquid chromatography: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 968:8–21. https://doi.org/10.1016/j.jchromb.2014.02.049

    Article  CAS  PubMed  Google Scholar 

  35. Azzaro AJ, Ziemniak J, Kemper E, Campbell BJ, VanDenBerg C (2007) Pharmacokinetics and absolute bioavailability of selegiline following treatment of healthy subjects with the selegiline transdermal system (6 mg/24 h): a comparison with oral selegiline capsules. J Clin Pharmacol 47(10):1256–1267. https://doi.org/10.1177/0091270007304779

    Article  CAS  PubMed  Google Scholar 

  36. Kronstrand R, Andersson MC, Ahlner J, Larson G (2001) Incorporation of selegiline metabolites into hair after oral selegiline intake. J Anal Toxicol 25(7):594–601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Science and Technology (2016YFC0800704), the National Natural Science Foundation of China (81772022, 81871531), the Science and Technology Commission of Shanghai Municipality (17DZ2273200/16DZ2290900), and Ministry of Finance, PR China (GY2017G-1) for their financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Xiang or Gengli Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the international and/or national committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yu, Y., Wang, Y. et al. Simultaneous determination of selegiline, desmethylselegiline, R/S-methamphetamine, and R/S-amphetamine in oral fluid by LC/MS/MS. Forensic Toxicol 37, 121–131 (2019). https://doi.org/10.1007/s11419-018-0443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-018-0443-8

Keywords

Navigation