Forensic Toxicology

, Volume 36, Issue 2, pp 320–333 | Cite as

Organ distribution of 4-MEC, MDPV, methoxetamine and α-PVP: comparison of QuEChERS and SPE

  • Sabrina Lehmann
  • Bastian Schulze
  • Andreas Thomas
  • Thomas Kamphausen
  • Mario Thevis
  • Markus A. Rothschild
  • Katja Mercer-Chalmers-Bender
Original Article



An organ distribution investigation was carried out on two deceased (A and B) who consumed 4-methylethcathinone (4-MEC), methylenedioxypyrovalerone (MDPV), methoxetamine (MXE) and α-pyrrolidinopentiophenone (α-PVP).


The detection of the aforementioned drugs in the specimens was performed on a liquid chromatography–tandem mass spectrometry system. Two different extraction methods were compared with each other—a quick, easy, cheap, effective, rugged and safe (QuEChERS) approach and an automated Instrument Top Sample Preparation-solid phase extraction (ITSP-SPE). Standard addition method was used to quantify the drugs.


4-MEC, MDPV and MXE were detected in all collected tissues and body fluids of the two deceased. α-PVP was also detectable in deceased A. Deceased A showed femoral blood concentrations of 97 µg/L 4-MEC, 396 µg/L MDPV, 295 µg/L MXE and 4 µg/L α-PVP measured after extraction by QuEChERS and 118 µg/L 4-MEC, 342 µg/L MDPV, 385 µg/L MXE and 4 µg/L α-PVP measured after ITSP-SPE. Deceased B revealed heart blood concentrations of 8 µg/L 4-MEC, 3 µg/L MDPV and 2 µg/L MXE after extraction by QuEChERS and 8 µg/L 4-MEC and 1 µg/L MXE after ITSP-SPE.


Both preparation techniques were suitable for quantifying NPS in organ tissues and body fluids. With respect to the autopsy findings, the cause of death of deceased A was determined to be an acute intoxication with NPS. No certain cause of death could be ascertained for deceased B.


Organ distribution New psychoactive substances 4-MEC QuEChERS ITSP-SPE LC–MS/MS 



The authors wish to thank Scientific Instruments Manufacturer GmbH (Oberhausen, Germany) for generously providing the ITSP-SPE system for this research. We thank Dr. June Mercer-Chalmers-Bender for editorial support and prosecutor Jörg Schindler for his supporting in gathering and providing relevant case information. This work was partly funded by the Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag, grant no. KF2429613MD3.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments comply with the current laws of the Federal Republic of Germany. The Department of Public Prosecution of Cologne gave permission for the publication of this case. The article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from a healthy subject who provided small volumes of blank blood for use in the validation experiments.


  1. 1.
    United Nations Office on Drugs and Crime (UNODC) (2016) New psychoactive substances: overview of trends, challenges and legal approaches. vol E/CN.7/2016/CRP.2Google Scholar
  2. 2.
    Guirguis A, Corkery JM, Stair JL, Kirton SB, Zloh M, Schifano F (2017) Intended and unintended use of cathinone mixtures. Hum Psychopharmacol Clin Exp 32:1–17CrossRefGoogle Scholar
  3. 3.
    US Drug Enforcement Administration (2014) Schedules of controlled substances: temporary placement of 10 synthetic cathinones into schedule I. Fed Regist 79:12938–12943Google Scholar
  4. 4.
    Ross EA, Watson M, Goldberger B (2011) “Bath salts” intoxication. N Engl J Med 365:967–968CrossRefPubMedGoogle Scholar
  5. 5.
    Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs”(synthetic cathinones) in the United States. Clin Toxicol 49:499–505CrossRefGoogle Scholar
  6. 6.
    Giannotti G, Canazza I, Caffino L, Bilel S, Ossato A, Fumagalli F, Marti M (2017) The cathinones MDPV and α-PVP elicit different behavioral and molecular effects following acute exposure. Neurotox Res 32:594–602CrossRefPubMedGoogle Scholar
  7. 7.
    Marusich JA, Antonazzo KR, Wiley JL, Blough BE, Partilla JS, Baumann MH (2014) Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3, 4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 87:206–213CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    US Drug Enforcement Administration (2011) Schedules of controlled substances: temporary placement of three synthetic cathinones in Schedule I. Fed Regist 76:65371–65375Google Scholar
  9. 9.
    World Health Organization (2014) 4-Methylethcathinone (4-MEC): critical review report. Expert Committee on Drug Dependence 36th ECDD Agenda item 4.3Google Scholar
  10. 10.
    Winstock AR, Mitcheson LR, Deluca P, Davey Z, Corazza O, Schifano F (2011) Mephedrone, new kid for the chop? Addiction 106:154–161CrossRefPubMedGoogle Scholar
  11. 11.
    Gil D, Adamowicz P, Skulska A, Tokarczyk B, Stanaszek R (2013) Analysis of 4-MEC in biological and non-biological material—three case reports. Forensic Sci Int 228:e11–e15CrossRefPubMedGoogle Scholar
  12. 12.
    Corazza O, Schifano F, Simonato P, Fergus S, Assi S, Stair J, Corkery J, Trincas G, Deluca P, Davey Z (2012) Phenomenon of new drugs on the Internet: the case of ketamine derivative methoxetamine. Hum Psychopharmacol Clin Exp 27:145–149CrossRefGoogle Scholar
  13. 13.
    Kumlien E, Hartvig P, Valind S, Øye I, Tedroff J, Långström B (1999) NMDA-receptor activity visualized with (S)-[N-methyl-11C] ketamine and positron emission tomography in patients with medial temporal lobe epilepsy. Epilepsia 40:30–37CrossRefPubMedGoogle Scholar
  14. 14.
    Lehmann S, Kieliba T, Beike J, Thevis M, Mercer-Chalmers-Bender K (2017) Determination of 74 new psychoactive substances in serum using automated in-line solid-phase extraction-liquid chromatography–tandem mass spectrometry. J Chromatogr B 1064:124–138CrossRefGoogle Scholar
  15. 15.
    Hasegawa K, Wurita A, Minakata K, Gonmori K, Nozawa H, Yamagishi I, Watanabe K, Suzuki O (2015) Postmortem distribution of AB-CHMINACA, 5-fluoro-AMB, and diphenidine in body fluids and solid tissues in a fatal poisoning case: usefulness of adipose tissue for detection of the drugs in unchanged forms. Forensic Toxicol 33:45–53CrossRefGoogle Scholar
  16. 16.
    Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431PubMedGoogle Scholar
  17. 17.
    Kudo K, Usumoto Y, Kikura-Hanajiri R, Sameshima N, Tsuji A, Ikeda N (2015) A fatal case of poisoning related to new cathinone designer drugs, 4-methoxy PV8, PV9, and 4-methoxy PV9, and a dissociative agent, diphenidine. Leg Med 17:421–426CrossRefGoogle Scholar
  18. 18.
    Usui K, Aramaki T, Hashiyada M, Hayashizaki Y, Funayama M (2014) Quantitative analysis of 3, 4-dimethylmethcathinone in blood and urine by liquid chromatography–tandem mass spectrometry in a fatal case. Leg Med 16:222–226CrossRefGoogle Scholar
  19. 19.
    Usui K, Hayashizaki Y, Hashiyada M, Funayama M (2012) Rapid drug extraction from human whole blood using a modified QuEChERS extraction method. Leg Med 14:286–296CrossRefGoogle Scholar
  20. 20.
    Gaunitz F, Schürenkamp J, Rostamzadeh A, Konkol C, Thevis M, Rothschild MA, Mercer-Chalmers-Bender K (2017) Analysis of taxine B/isotaxine B in a plasma specimen by LC–MS/MS in a case of fatal poisoning: concealed suicide by ingestion of yew (Taxus L.) leaves of a patient with a long-term history of borderline personality disorder. Forensic Toxicol 35:421–427CrossRefGoogle Scholar
  21. 21.
    Pragst F, Herzler M, Erxleben B-T (2004) Systematic toxicological analysis by high-performance liquid chromatography with diode array detection (HPLC–DAD). Clin Chem Lab Med 42:1325–1340CrossRefPubMedGoogle Scholar
  22. 22.
    Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A (2012) Therapeutic and toxic blood concentrations of nearly 1000 drugs and other xenobiotics. Crit Care 16:R136. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thomas A, Schänzer W, Thevis M (2014) Determination of human insulin and its analogues in human blood using liquid chromatography coupled to ion mobility mass spectrometry (LC–IM-MS). Drug Test Anal 6:1125–1132CrossRefPubMedGoogle Scholar
  24. 24.
    Cuadros-Rodríguez L, Bagur-González MG, Sánchez-Vinas M, González-Casado A, Gómez-Sáez AM (2007) Principles of analytical calibration/quantification for the separation sciences. J Chromatogr A 1158:33–46CrossRefPubMedGoogle Scholar
  25. 25.
    Paul L, Musshoff F, Aebi B, Auwärter V, Krämer T, Peters F, Skopp G, Aderjan R, Herbold M, Schmitt G (2009) Richtlinie der GTFCh zur Qualitätssicherung bei forensisch-toxikologischen Untersuchungen. Toxichem Krimtech 76:142–176Google Scholar
  26. 26.
    Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165:216–224CrossRefPubMedGoogle Scholar
  27. 27.
    Matuszewski B, Constanzer M, Chavez-Eng C (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal Chem 75:3019–3030CrossRefPubMedGoogle Scholar
  28. 28.
    Peters F, Musshoff F, Kraemer T (2009) Anhang B. Richtlinie der GTFCh zur Qualitätssicherung bei forensisch-toxikologischen Untersuchungen Anforderungen an die Validierung von Analysenmethoden. Toxichem Krimtech 76:185–208Google Scholar
  29. 29.
    European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2014) Europol Joint Report on a new psychoactive substance: MDPV (3,4-methylenedioxypyrovalerone). Publications Office of the European Union, Luxembourg.
  30. 30.
    Katselou M, Papoutsis I, Nikolaou P, Spiliopoulou C, Athanaselis S (2016) α-PVP (“flakka”): a new synthetic cathinone invades the drug arena. Forensic Toxicol 34:41–50CrossRefGoogle Scholar
  31. 31.
    Araújo AM, Valente MJ, Carvalho M, Da Silva DD, Gaspar H, Carvalho F, de Lourdes Bastos M, De Pinho PG (2015) Raising awareness of new psychoactive substances: chemical analysis and in vitro toxicity screening of ‘legal high’ packages containing synthetic cathinones. Arch Toxicol 89:757–771CrossRefPubMedGoogle Scholar
  32. 32.
    Leffler AM, Smith PB, de Armas A, Dorman FL (2014) The analytical investigation of synthetic street drugs containing cathinone analogs. Forensic Sci Int 234:50–56CrossRefPubMedGoogle Scholar
  33. 33.
    Wyman JF, Lavins ES, Engelhart D, Armstrong EJ, Snell KD, Boggs PD, Taylor SM, Norris RN, Miller FP (2013) Postmortem tissue distribution of MDPV following lethal intoxication by “bath salts”. J Anal Toxicol 37:182–185CrossRefPubMedGoogle Scholar
  34. 34.
    Cawrse BM, Levine B, Jufer RA, Fowler DR, Vorce SP, Dickson AJ, Holler JM (2012) Distribution of methylone in four postmortem cases. J Anal Toxicol 36:434–439CrossRefPubMedGoogle Scholar
  35. 35.
    Wright TH, Cline-Parhamovich K, Lajoie D, Parsons L, Dunn M, Ferslew KE (2013) Deaths involving methylenedioxypyrovalerone (MDPV) in upper east Tennessee. J Forensic Sci 58:1558–1562CrossRefPubMedGoogle Scholar
  36. 36.
    Murray BL, Murphy CM, Beuhler MC (2012) Death following recreational use of designer drug “bath salts” containing 3, 4-methylenedioxypyrovalerone (MDPV). J Med Toxicol 8:69–75CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hasegawa K, Suzuki O, Wurita A, Minakata K, Yamagishi I, Nozawa H, Gonmori K, Watanabe K (2014) Postmortem distribution of α-pyrrolidinovalerophenone and its metabolite in body fluids and solid tissues in a fatal poisoning case measured by LC–MS–MS with the standard addition method. Forensic Toxicol 32:225–234CrossRefGoogle Scholar
  38. 38.
    Potocka-Banaś B, Janus T, Majdanik S, Banaś T, Dembińska T, Borowiak K (2017) Fatal intoxication with α-PVP, a synthetic cathinone derivative. J Forensic Sci 62:553–556CrossRefPubMedGoogle Scholar
  39. 39.
    Saito T, Namera A, Osawa M, Aoki H, Inokuchi S (2013) SPME–GC–MS analysis of α-pyrrolidinovaleorophenone in blood in a fatal poisoning case. Forensic Toxicol 31:328–332CrossRefGoogle Scholar
  40. 40.
    Knoy JL, Peterson BL, Couper FJ (2014) Suspected impaired driving case involving α-pyrrolidinovalerophenone, methylone and ethylone. J Anal Toxicol 38:615–617CrossRefPubMedGoogle Scholar
  41. 41.
    Soh YNA, Elliott S (2014) An investigation of the stability of emerging new psychoactive substances. Drug Test Anal 6:696–704CrossRefPubMedGoogle Scholar
  42. 42.
    Skopp G (2004) Preanalytic aspects in postmortem toxicology. Forensic Sci Int 142:75–100CrossRefPubMedGoogle Scholar
  43. 43.
    Smith P, Cole R, Hamilton S, West K, Morley S, Maskell P (2016) Reporting two fatalities associated with the use of 4-methylethcathinone (4-MEC) and a review of the literature. J Anal Toxicol 40:553–560CrossRefPubMedGoogle Scholar
  44. 44.
    Hajkova K, Jurasek B, Sykora D, Palenicek T, Miksatkova P, Kuchar M (2016) Salting-out-assisted liquid–liquid extraction as a suitable approach for determination of methoxetamine in large sets of tissue samples. Anal Bioanal Chem 408:1171–1181CrossRefPubMedGoogle Scholar
  45. 45.
    Imbert L, Boucher A, Delhome G, Cueto T, Boudinaud M, Maublanc J, Dulaurent S, Descotes J, Lachâtre G, Gaulier J-M (2014) Analytical findings of an acute intoxication after inhalation of methoxetamine. J Anal Toxicol 38:410–415CrossRefPubMedGoogle Scholar
  46. 46.
    Shields JE, Dargan PI, Wood DM, Puchnarewicz M, Davies S, Waring WS (2012) Methoxetamine associated reversible cerebellar toxicity: three cases with analytical confirmation. Clin Toxicol 50:438–440CrossRefGoogle Scholar
  47. 47.
    Wood DM, Davies S, Puchnarewicz M, Johnston A, Dargan PI (2012) Acute toxicity associated with the recreational use of the ketamine derivative methoxetamine. Eur J Clin Pharmacol 68:853–856CrossRefPubMedGoogle Scholar
  48. 48.
    Adamowicz P, Zuba D (2015) Fatal intoxication with methoxetamine. J Forensic Sci 60:S264–S268CrossRefPubMedGoogle Scholar
  49. 49.
    Wikström M, Thelander G, Dahlgren M, Kronstrand R (2013) An accidental fatal intoxication with methoxetamine. J Anal Toxicol 37:43–46CrossRefPubMedGoogle Scholar
  50. 50.
    Chiappini S, Claridge H, Corkery JM, Goodair C, Loi B, Schifano F (2015) Methoxetamine-related deaths in the UK: an overview. Hum Psychopharmacol Clin Exp 30:244–248CrossRefGoogle Scholar
  51. 51.
    Wunder C, Kauert GF, Toennes SW (2014) Factors leading to the degradation/loss of insulin in postmortem blood samples. Forensic Sci Int 241:173–177CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Association of Forensic Toxicology and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Legal Medicine, Faculty of MedicineUniversity of CologneCologneGermany
  2. 2.Institute of BiochemistryGerman Sport University CologneCologneGermany
  3. 3.Institute of Forensic MedicineUniversity of Basel, Health Department BaselBaselSwitzerland

Personalised recommendations