Cornel iridoid glycoside induces autophagy to protect against tau oligomer neurotoxicity induced by the activation of glycogen synthase kinase-3β


Tau oligomers are the etiologic molecules of Alzheimer’s disease, and correlate strongly with neuronal loss and exhibit neurotoxicity. Recent evidence indicates that small tau oligomers are the most relevant toxic aggregate species. The aim of the present study was to investigate the mechanisms of cornel iridoid glycoside (CIG) on tau oligomers and cognitive functions. We injected wortmannin and GF-109203X (WM/GFX, 200 μM each) into the lateral ventricles to induce tau oligomer and memory impairment in rats. When orally administered with CIG at 60 and 120 mg/kg/day for 14 days, CIG decreased the escape latency in the Morris water maze test. We also found that CIG restored the expression of presynaptic p-synapsin, synaptophysin, and postsynaptic density-95 (PSD-95) decreased by WM/GFX in rat cortex. CIG reduced the accumulation of tau oligomers in the brain of WM/GFX rats and in cells transfected with wild type glycogen synthase kinase-3β (wtGSK-3β). In addition, CIG up-regulated the levels of ATG7, ATG12, Beclin-1, and LC3II in vivo and in vitro, suggesting the restoration of autophagy function. These results suggest that CIG could ameliorate memory deficits and regulate memory-associated synaptic proteins through the clearance of tau oligomers accumulation. Moreover, CIG clears tau oligomers by restoring autophagy function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M (2017) Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat Commun 8:275

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Michalski D, Preissler H, Hofmann S, Kacza J, Hartig W (2016) Decline of microtubule-associated protein tau after experimental stroke in differently aged wild-type and 3xTg mice with Alzheimer-like alterations. Neuroscience 330:1–11

    CAS  PubMed  Google Scholar 

  4. 4.

    Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT, Irizarry MC (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62:925–931

    CAS  PubMed  Google Scholar 

  5. 5.

    Cowan CM, Quraishe S, Mudher A (2012) What is the pathological significance of tau oligomers? Biochem Soc Trans 40:693–697

    CAS  PubMed  Google Scholar 

  6. 6.

    Lasagna-Reeves CA, Castillo-Carranza DL, Jackson GR, Kayed R (2011) Tau oligomers as potential targets for immunotherapy for Alzheimer's disease and tauopathies. Curr Alzheimer Res 8:659–665

    CAS  PubMed  Google Scholar 

  7. 7.

    Tiernan CT, Mufson EJ, Kanaan NM, Counts SE (2018) Tau oligomer pathology in nucleus basalis neurons during the progression of Alzheimer disease. J Neuropathol Exp Neurol 77:246–259

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer's disease. FASEB J 26:1946–1959

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Kayed R (2014) Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis 40(Suppl 1):S97–S111

    PubMed  Google Scholar 

  10. 10.

    Sengupta U, Guerrero-Munoz MJ, Castillo-Carranza DL, Lasagna-Reeves CA, Gerson JE, Paulucci-Holthauzen AA, Krishnamurthy S, Farhed M, Jackson GR, Kayed R (2015) Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. Biol Psychiatry 78:672–683

    CAS  PubMed  Google Scholar 

  11. 11.

    Sahara N, Ren Y, Ward S, Binder LI, Suhara T, Higuchi M (2014) Tau oligomers as potential targets for early diagnosis of tauopathy. J Alzheimers Dis 40(Suppl 1):S91–S96

    PubMed  Google Scholar 

  12. 12.

    Cardenas-Aguayo MC, Gomez-Virgilio L, DeRosa S, Meraz-Rios MA (2014) The role of tau oligomers in the onset of Alzheimer's disease neuropathology. ACS Chem Neurosci 5:1178–1191

    CAS  Google Scholar 

  13. 13.

    Di Domenico F, Tramutola A, Foppoli C, Head E, Perluigi M, Butterfield DA (2018) mTOR in down syndrome: role in Ass and tau neuropathology and transition to Alzheimer disease-like dementia. Free Radic Biol Med 114:94–101

    PubMed  Google Scholar 

  14. 14.

    Wischik CM, Harrington CR, Storey JM (2014) Tau-aggregation inhibitor therapy for Alzheimer's disease. Biochem Pharmacol 88:529–539

    CAS  PubMed  Google Scholar 

  15. 15.

    Kruger U, Wang Y, Kumar S, Mandelkow EM (2012) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 33:2291–2305

    PubMed  Google Scholar 

  16. 16.

    Umeda T, Ono K, Sakai A, Yamashita M, Mizuguchi M, Klein WL, Yamada M, Mori H, Tomiyama T (2016) Rifampicin is a candidate preventive medicine against amyloid-beta and tau oligomers. Brain 139:1568–1586

    PubMed  Google Scholar 

  17. 17.

    Jiang ZQ, Li Y, Jiang LH, Gu H, Wang MY (2013) Hepatoprotective effects of extracts from processed corni fructus against d-galactose-induced liver injury in mice. Zhong Yao Cai 36:85–89

    CAS  PubMed  Google Scholar 

  18. 18.

    Zhang Y, Qiao ZL, Guo L (2012) Clinical research of senile vascular dementia treated with Bushen Yizhi Decoction. World J Integr Tradit West Med 7:594–598

    Google Scholar 

  19. 19.

    Han DJ, Yang XY, Shi J, Tian JZ (2014) Analysis on therapies and medications in randomized controlled trials of TCM for dementia. J Tradit Chin Med 55:1051–1054

    Google Scholar 

  20. 20.

    Ma D, Zhu Y, Li Y, Yang C, Zhang L, Li Y, Li L, Zhang L (2016) Beneficial effects of cornel iridoid glycoside on behavioral impairment and senescence status in SAMP8 mice at different ages. Behav Brain Res 312:20–29

    CAS  PubMed  Google Scholar 

  21. 21.

    Yang C, Li X, Gao W, Wang Q, Zhang L, Li Y, Li L, Zhang L (2018) Cornel iridoid glycoside inhibits tau hyperphosphorylation via regulating cross-talk between GSK-3beta and PP2A signaling. Front Pharmacol 9:682

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Balaraman Y, Limaye AR, Levey AI, Srinivasan S (2006) Glycogen synthase kinase 3beta and Alzheimer's disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63:1226–1235

    CAS  PubMed  Google Scholar 

  23. 23.

    Forlenza OV, Torres CA, Talib LL, de Paula VJ, Joaquim HP, Diniz BS, Gattaz WF (2011) Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer's disease. J Psychiatr Res 45:220–224

    PubMed  Google Scholar 

  24. 24.

    Avila J, Insausti R, Del RJ (2010) Memory and neurogenesis in aging and Alzheimer's disease. Aging Dis 1:30–36

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yao RQ, Zhang L, Wang W, Li L (2009) Cornel iridoid glycoside promotes neurogenesis and angiogenesis and improves neurological function after focal cerebral ischemia in rats. Brain Res Bull 79:69–76

    CAS  PubMed  Google Scholar 

  26. 26.

    Zhao LH, Ding YX, Zhang L, Li L (2010) Cornel iridoid glycoside improves memory ability and promotes neuronal survival in fimbria-fornix transected rats. Eur J Pharmacol 647:68–74

    CAS  PubMed  Google Scholar 

  27. 27.

    Yang CC, Kuai XX, Li YL, Zhang L, Yu JC, Li L, Zhang L (2013) Cornel iridoid glycoside attenuates tau hyperphosphorylation by inhibition of PP2A demethylation. Evid Based Complement Altern Med 2013:108486

    Google Scholar 

  28. 28.

    Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    CAS  PubMed  Google Scholar 

  29. 29.

    Juhasz G, Erdi B, Sass M, Neufeld TP (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21:3061–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Martinez A, Perez DI (2008) GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer's disease? J Alzheimers Dis 15:181–191

    CAS  PubMed  Google Scholar 

  31. 31.

    Pavel M, Imarisio S, Menzies FM, Jimenez-Sanchez M, Siddiqi FH, Wu X, Renna M, O'Kane CJ, Crowther DC, Rubinsztein DC (2016) CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun 7:13821

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Pan H, Wang Z, Jiang L, Sui X, You L, Shou J, Jing Z, Xie J, Ge W, Cai X, Huang W, Han W (2014) Autophagy inhibition sensitizes hepatocellular carcinoma to the multikinase inhibitor linifanib. Sci Rep 4:6683

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E, D'Hooge R, Alzheimer C, Mandelkow EM (2011) Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 31:2511–2525

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sengupta U, Portelius E, Hansson O, Farmer K, Castillo-Carranza D, Woltjer R, Zetterberg H, Galasko D, Blennow K, Kayed R (2017) Tau oligomers in cerebrospinal fluid in Alzheimer's disease. Ann Clin Transl Neurol 4:226–235

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tepper K, Biernat J, Kumar S, Wegmann S, Timm T, Hubschmann S, Redecke L, Mandelkow EM, Muller DJ, Mandelkow E (2014) Oligomer formation of tau protein hyperphosphorylated in cells. J Biol Chem 289:34389–34407

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Llorens-Martin M, Fuster-Matanzo A, Teixeira CM, Jurado-Arjona J, Ulloa F, Defelipe J, Rabano A, Hernandez F, Soriano E, Avila J (2013) GSK-3beta overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo. Mol Psychiatry 18:451–460

    CAS  PubMed  Google Scholar 

  37. 37.

    Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu H, Wang JZ (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem 87:1333–1344

    CAS  PubMed  Google Scholar 

  38. 38.

    Usenovic M, Niroomand S, Drolet RE, Yao L, Gaspar RC, Hatcher NG, Schachter J, Renger JJ, Parmentier-Batteur S (2015) Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J Neurosci 35:14234–14250

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Liu M, Ni J, Kosik KS, Yeh LA (2004) Development of a fluorescent high throughput assay for tau aggregation. Assay Drug Dev Technol 2:609–619

    CAS  PubMed  Google Scholar 

  40. 40.

    Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer's disease. Neurobiol Aging 24:1023–1027

    CAS  PubMed  Google Scholar 

  41. 41.

    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R (2011) Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 6:39

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Fornasiero EF, Raimondi A, Guarnieri FC, Orlando M, Fesce R, Benfenati F, Valtorta F (2012) Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner. J Neurosci 32:12214–12227

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Nelson CD, Kim MJ, Hsin H, Chen Y, Sheng M (2013) Phosphorylation of threonine-19 of PSD-95 by GSK-3beta is required for PSD-95 mobilization and long-term depression. J Neurosci 33:12122–12135

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Garringer HJ, Murrell J, Sammeta N, Gnezda A, Ghetti B, Vidal R (2013) Increased tau phosphorylation and tau truncation, and decreased synaptophysin levels in mutant BRI2/tau transgenic mice. PLoS ONE 8:e56426

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ulakcsai Z, Bagamery F, Szoko E, Tabi T (2018) The role of autophagy induction in the mechanism of cytoprotective effect of resveratrol. Eur J Pharm Sci 123:135–142

    CAS  PubMed  Google Scholar 

  46. 46.

    Park KJ, Lee SH, Lee CH, Jang JY, Chung J, Kwon MH, Kim YS (2009) Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death. Biochem Biophys Res Commun 382:726–729

    CAS  PubMed  Google Scholar 

  47. 47.

    Burgoyne JR (2018) Oxidative stress impairs autophagy through oxidation of ATG3 and ATG7. Autophagy 14:1092–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Pla A, Pascual M, Guerri C (2016) Autophagy constitutes a protective mechanism against ethanol toxicity in mouse astrocytes and neurons. PLoS ONE 11:e153097

    Google Scholar 

  49. 49.

    Xu L, Shen J, Yu L, Sun J, McQuillan PM, Hu Z, Yan M (2018) Role of autophagy in sevoflurane-induced neurotoxicity in neonatal rat hippocampal cells. Brain Res Bull 140:291–298

    CAS  PubMed  Google Scholar 

Download references


This research was supported by the National Natural Science Foundation of China (Nos. 81703729, 81473373), National Science and Technology Major Project of China (No. 2015ZX09101-016), Beijing New Medical Discipline Grant (XK100270569), and Beijing High-level Health and Technical Personal Plan (Nos. 2011-1-7, 2014-2-014).

Author information



Corresponding authors

Correspondence to Lin Li or Lan Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Li, X., Zhang, L. et al. Cornel iridoid glycoside induces autophagy to protect against tau oligomer neurotoxicity induced by the activation of glycogen synthase kinase-3β. J Nat Med 73, 717–726 (2019).

Download citation


  • Cornel iridoid glycoside
  • Autophagy
  • Tau oligomer
  • Glycogen synthase kinase-3β