Skip to main content

Advertisement

Log in

Oxyresveratrol prevents murine H22 hepatocellular carcinoma growth and lymph node metastasis via inhibiting tumor angiogenesis and lymphangiogenesis

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effects and mechanisms of oxyresveratrol (Oxyres) on hepatocellular carcinoma (HCC) in vitro and in vivo. The MTT and Transwell assays were performed to investigate the effects of Oxyres on cell proliferation and migration of two HCC cell lines, QGY-7701 and SMMC-7721 cells. H22 cells were subcutaneously injected into hind foot pads of 70 male mice to establish a lymph node metastasis model. These mice were randomly divided into seven groups as follows, control group, HCC group, Oxyres 20 mg/kg group, Oxyres 40 mg/kg group, Oxyres 60 mg/kg group, Resveratrol (Res) group, and Adriamycin (ADM) group. Oxyres, Res, and ADM were intraperitoneally injected daily for consecutive 21 days. Tumors and popliteal lymph node were isolated and embedded for histology analysis. Expressions of CD31 and vascular endothelial growth factor receptor-3 (VEGFR3) in tumors were detected by immunohistocehmistry. Expressions of vascular endothelial growth factor C (VEGF-C) were measured by Western blot. Oxyres significantly inhibited the proliferation and migration of QGY-7701 and SMMC-7721 cells. Oxyres significantly inhibited tumor growth (p < 0.001) and metastasis to sentinel lymph nodes (70%) in a dose-dependent manner. Oxyres showed a similar inhibition rate as Res. Oxyres also significantly decreased micro-blood vessel density and micro-lymphatic vessel density in tumors (p < 0.05). Expressions of CD31, VEGFR3, and VEGF-C of tumors were also inhibited by Oxyres (p < 0.05). Oxyres exerts anti-tumor effects against HCC through inhibiting both angiogenesis and lymph node metastasis, which suggests Oxyres be a potential therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Z, Wang J, Mao Y, Zou B, Fan X (2016) MicroRNA-101 suppresses migration and invasion via targeting vascular endothelial growth factor-C in hepatocellular carcinoma cells. Oncol Lett 11:433–438. https://doi.org/10.3892/ol.2015.3832

    Article  CAS  PubMed  Google Scholar 

  2. Zhuang PY, Shen J, Zhu XD, Lu L, Wang L, Tang ZY, Sun HC (2013) Prognostic roles of cross-talk between peritumoral hepatocytes and stromal cells in hepatocellular carcinoma involving peritumoral VEGF-C, VEGFR-1 and VEGFR-3. PLoS One 8:e64598. https://doi.org/10.1371/journal.pone.0064598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tong SW, Yang YX, Hu HD, An X, Ye F, Hu P, Ren H, Li SL, Zhang DZ (2012) Proteomic investigation of 5-fluorouracil resistance in a human hepatocellular carcinoma cell line. J Cell Biochem 113:1671–1680. https://doi.org/10.1002/jcb.24036

    Article  CAS  PubMed  Google Scholar 

  4. Broxterman HJ, Gotink KJ, Verheul HM (2009) Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Update 12:114–126. https://doi.org/10.1016/j.drup.2009.07.001

    Article  CAS  Google Scholar 

  5. Paul B, Masih I, Deopujari J, Charpentier C (1999) Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J Ethnopharmacol 68:71–76

    Article  CAS  PubMed  Google Scholar 

  6. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    CAS  PubMed  Google Scholar 

  7. Nwachukwu JC, Srinivasan S, Bruno NE, Parent AA, Hughes TS, Pollock JA, Gjyshi O, Cavett V, Nowak J, Garcia-Ordonez RD, Houtman R, Griffin PR, Kojetin DJ, Katzenellenbogen JA, Conkright MD, Nettles KW (2014) Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. Elife 3:e2057. https://doi.org/10.7554/eLife.02057

    Article  Google Scholar 

  8. Gambini J, Ingles M, Olaso G, Lopez-Grueso R, Bonet-Costa V, Gimeno-Mallench L, Mas-Bargues C, Abdelaziz KM, Gomez-Cabrera MC, Vina J, Borras C (2015) Properties of resveratrol: in vitro and in vivo studies about Metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev. https://doi.org/10.1155/2015/837042 (837042)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21:R209–R225. https://doi.org/10.1530/ERC-13-0171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh CK, Ndiaye MA, Ahmad N (2015) Resveratrol and cancer: challenges for clinical translation. Biochim Biophys Acta 1852:1178–1185. https://doi.org/10.1016/j.bbadis.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Rajasekaran D, Elavarasan J, Sivalingam M, Ganapathy E, Kumar A, Kalpana K, Sakthisekaran D (2011) Resveratrol interferes with N-nitrosodiethylamine-induced hepatocellular carcinoma at early and advanced stages in male Wistar rats. Mol Med Rep 4:1211–1217. https://doi.org/10.3892/mmr.2011.555

    Article  CAS  PubMed  Google Scholar 

  12. Sasivimolphan P, Lipipun V, Ritthidej G, Chitphet K, Yoshida Y, Daikoku T, Sritularak B, Likhitwitayawuid K, Pramyothin P, Hattori M, Shiraki K (2012) Microemulsion-based oxyresveratrol for topical treatment of herpes simplex virus (HSV) infection: physicochemical properties and efficacy in cutaneous HSV-1 infection in mice. AAPS Pharm Sci Tech 13:1266–1275. https://doi.org/10.1208/s12249-012-9828-x

    Article  CAS  Google Scholar 

  13. Joung DK, Mun SH, Choi SH, Kang OH, Kim SB, Lee YS, Zhou T, Kong R, Choi JG, Shin DW, Kim YC, Lee DS, Kwon DY (2016) Antibacterial activity of oxyresveratrol against methicillin-resistant Staphylococcus aureus and its mechanism. Exp Ther Med 12:1579–1584. https://doi.org/10.3892/etm.2016.3486

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TF (2003) Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9:64–76

    Article  CAS  PubMed  Google Scholar 

  15. Chen YC, Tien YJ, Chen CH, Beltran FN, Amor EC, Wang RJ, Wu DJ, Mettling C, Lin YL, Yang WC (2013) Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complement Altern Med 13:45. https://doi.org/10.1186/1472-6882-13-45

    Article  PubMed  PubMed Central  Google Scholar 

  16. Choi SW, Jang YJ, Lee YJ, Leem HH, Kim EO (2013) Analysis of functional constituents in Mulberry (Morus alba L.) twigs by different cultivars, producing areas, and heat processings. Prev Nutr Food Sci 18:256–262. https://doi.org/10.3746/pnf.2013.18.4.256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH, Moon JO (2003) In-vitro and in vivo anti-inflammatory effect of oxyresveratrol from Morus alba L. J Pharm Pharmacol 55:1695–1700. https://doi.org/10.1211/0022357022313

    Article  CAS  PubMed  Google Scholar 

  18. Singh N, Agrawal M, Dore S (2013) Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 4:1151–1162. https://doi.org/10.1021/cn400094w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A, Bei R (2015) In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 16:9236–9282. https://doi.org/10.3390/ijms16059236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiajing C, Yao X, Wei R, Ke X, Liming Z (2015) Study on tumor cell proliferation activity of oxyresveratrol in vitro and in vivo. Sichuan J Physiol Sci 37(4):174–176

    Google Scholar 

  21. Yue H, Yao X, Liming Z (2015) Study on the inhibitory effect of resveratrol on the proliferation of hepatoma cells in vivo and in vitro. Pharmacol Clin Chinese Mater Medica 31(3):34–37

    Google Scholar 

  22. Chen J, Yu Y, Li S, Ding W (2016) Resveratrol and Coumarin: novel agricultural antibacterial agent against Ralstonia solanacearum in vitro and in vivo. Molecules. https://doi.org/10.3390/molecules21111501

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yu L, Sun ZJ, Wu SL, Pan CE (2003) Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer. World J Gastroenterol 9:2341–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma X, Jin S, Zhang Y, Wan L, Zhao Y, Zhou L (2014) Inhibitory effects of nobiletin on hepatocellular carcinoma in vitro and in vivo. Phytother Res 28:560–567. https://doi.org/10.1002/ptr.5024

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Yang X, Yuan Y, Liu Q, Tang X, Chen Z, Yu Y (2006) Changes of gene expression of human hepatocellular carcinoma cell line QGY-7701 induced by Tetrazanbigen. Acta Academiae Medicinae Militaris Tertiae 28:151–153

    CAS  Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  27. Li ZJ, Ying XJ, Chen HL, Ye PJ, Chen ZL, Li G, Jiang HF, Liu J, Zhou SZ (2013) Insulin-like growth factor-1 induces lymphangiogenesis and facilitates lymphatic metastasis in colorectal cancer. World J Gastroenterol 19:7788–7794. https://doi.org/10.3748/wjg.v19.i43.7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qingjun Z, Jing Z, Xiaoyan G, Dan Z, Chengbo Z (2015) The effect of basil polysaccharide on the survival period of murine H22 hepatocellular carcinoma lymph metastasis. J Shandong Univ Traditional Chinese Med 39(3):274–276

    Google Scholar 

  29. Jin Y, Wang S, Chen W, Zhang J, Wang B, Guan H, Tang J (2013) Annexin A7 suppresses lymph node metastasis of hepatocarcinoma cells in a mouse model. BMC Cancer 13:522. https://doi.org/10.1186/1471-2407-13-522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu MC, Liu L, Wang XR, Shuai WP, Hu Y, Han M, Gao JQ (2016) Folate receptor-targeted liposomes loaded with a diacid metabolite of norcantharidin enhance antitumor potency for H22 hepatocellular carcinoma both in vitro and in vivo. Int J Nanomedicine 11:1395–1412. https://doi.org/10.2147/IJN.S96862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dai W, Wang F, Lu J, Xia Y, He L, Chen K, Li J, Li S, Liu T, Zheng Y, Wang J, Lu W, Zhou Y, Yin Q, Abudumijiti H, Chen R, Zhang R, Zhou L, Zhou Z, Zhu R, Yang J, Wang C, Zhang H, Zhou Y, Xu L, Guo C (2015) By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget 6:13703–13717. https://doi.org/10.18632/oncotarget.3800

    Article  PubMed  PubMed Central  Google Scholar 

  32. Arteaga O, Revuelta M, Uriguen L, Alvarez A, Montalvo H, Hilario E (2015) Pretreatment with resveratrol prevents neuronal injury and cognitive deficits induced by perinatal hypoxia-ischemia in rats. PLoS One 10:e142424. https://doi.org/10.1371/journal.pone.0142424

    Article  CAS  Google Scholar 

  33. Zunino SJ, Storms DH, Newman JW, Pedersen TL, Keen CL, Ducore JM (2012) Resveratrol given intraperitoneally does not inhibit the growth of high-risk t(4;11) acute lymphoblastic leukemia cells in a NOD/SCID mouse model. Int J Oncol 40:1277–1284. https://doi.org/10.3892/ijo.2011.1316

    Article  CAS  PubMed  Google Scholar 

  34. Tu T, Budzinska MA, Maczurek AE, Cheng R, Di Bartolomeo A, Warner FJ, McCaughan GW, McLennan SV, Shackel NA (2014) Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development. Int J Mol Sci 15:9422–9458. https://doi.org/10.3390/ijms15069422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yokoo T, Patel AD, Lev-Cohain N, Singal AG, Yopp AC, Pedrosa I (2017) Extrahepatic metastasis risk of hepatocellular carcinoma based on alpha-fetoprotein and tumor staging parameters at cross-sectional imaging. Cancer Manag Res 9:503–511. https://doi.org/10.2147/CMAR.S147097

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cacchi C, Arnholdt HM, Jahnig H, Anthuber M, Probst A, Oruzio DV, Markl B (2012) Clinical significance of lymph vessel density in T3 colorectal carcinoma. Int J Colorectal Dis 27:721–726. https://doi.org/10.1007/s00384-011-1373-7

    Article  PubMed  Google Scholar 

  37. Li ZJ, Ying XJ, Chen HL, Ye PJ, Chen ZL, Li G, Jiang HF, Liu J, Zhou SZ (2013) Insulin-like growth factor-1 induces lymphangiogenesis and facilitates lymphatic metastasis in colorectal cancer. World J Gastroenterol 19:7788–7794. https://doi.org/10.3748/wjg.v19.i43.7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strijkers GJ, Kluza E, Van Tilborg GA, van der Schaft DW, Griffioen AW, Mulder WJ, Nicolay K (2010) Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis 13:161–173. https://doi.org/10.1007/s10456-010-9165-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eo JS, Jeong JM (2016) Angiogenesis imaging using (68)Ga-RGD PET/CT: therapeutic implications. Semin Nucl Med 46:419–427. https://doi.org/10.1053/j.semnuclmed.2016.04.001

    Article  PubMed  Google Scholar 

  40. Han KY, Chang JH, Dugas-Ford J, Alexander JS, Azar DT (2014) Involvement of lysosomal degradation in VEGF-C-induced down-regulation of VEGFR-3. FEBS Lett 588:4357–4363. https://doi.org/10.1016/j.febslet.2014.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou J, Li SX, Wang W, Guo XY, Lu XY, Yan XP, Huang D, Wei BY, Cao L (2013) Variations in the levels of mulberroside A, oxyresveratrol, and resveratrol in mulberries in different seasons and during growth. Sci World J 2013:380692. https://doi.org/10.1155/2013/380692

    Article  CAS  Google Scholar 

  42. Chen JC, Chang YW, Hong CC, Yu YH, Su JL (2012) The role of the VEGF-C/VEGFRs axis in tumor progression and therapy. Int J Mol Sci 14:88–107. https://doi.org/10.3390/ijms14010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Markowska AI, Jefferies KC, Panjwani N (2011) Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem 286:29913–29921. https://doi.org/10.1074/jbc.M111.226423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang LQ, Xu XS, Wan Y, Song SD, Wang RT, Chen W, Wang ZX, Chang HL, Wei JC, Dong YF, Liu C (2015) Prognostic implications of estrogen receptor 1 and vascular endothelial growth factor a expression in primary gallbladder carcinoma. World J Gastroenterol 21:1243–1250. https://doi.org/10.3748/wjg.v21.i4.1243

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wada H, Ura S, Kitaoka S, Satoh-Asahara N, Horie T, Ono K, Takaya T, Takanabe-Mori R, Akao M, Abe M, Morimoto T, Murayama T, Yokode M, Fujita M, Shimatsu A, Hasegawa K (2011) Distinct characteristics of circulating vascular endothelial growth factor-a and C levels in human subjects. PLoS One 6:e29351. https://doi.org/10.1371/journal.pone.0029351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie LX, Zhai TT, Yang LP, Yang E, Zhang XH, Chen JY, Zhang H (2013) Lymphangiogenesis and prognostic significance of vascular endothelial growth factor C in gastro-oesophageal junction adenocarcinoma. Int J Exp Pathol 94:39–46. https://doi.org/10.1111/iep.12005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lei Y, Li B, Tong S, Qi L, Hu X, Cui Y, Li Z, He W, Zu X, Wang Z, Chen M (2015) miR-101 suppresses vascular endothelial growth factor C that inhibits migration and invasion and enhances cisplatin chemosensitivity of bladder cancer cells. PLoS One 10:e117809. https://doi.org/10.1371/journal.pone.0117809

    Article  CAS  Google Scholar 

  48. He W, Tang B, Yang D, Li Y, Song W, Cheang T, Chen X, Li Y, Chen L, Zhan W, Li W, He Y (2013) Double-positive expression of high-mobility group box 1 and vascular endothelial growth factor C indicates a poorer prognosis in gastric cancer patients. World J Surg Oncol 11:161. https://doi.org/10.1186/1477-7819-11-161

    Article  PubMed  PubMed Central  Google Scholar 

  49. Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7:121–127. https://doi.org/10.1016/j.ccr.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  50. Paduch R (2016) The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol (Dordr) 39:397–410. https://doi.org/10.1007/s13402-016-0281-9

    Article  CAS  Google Scholar 

  51. Su JL, Yen CJ, Chen PS, Chuang SE, Hong CC, Kuo IH, Chen HY, Hung MC, Kuo ML (2007) The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer 96:541–545. https://doi.org/10.1038/sj.bjc.6603487

    Article  CAS  PubMed  Google Scholar 

  52. Chien MH, Ku CC, Johansson G, Chen MW, Hsiao M, Su JL, Inoue H, Hua KT, Wei LH, Kuo ML (2009) Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway. Carcinogenesis 30:2005–2013. https://doi.org/10.1093/carcin/bgp244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Yu Yu of the Research Laboratory of Pharmaceutical Chemistry and Biomaterials, Chongqing University of Medical Science for kindly giving us QGY-7701 cells.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Yuan Zhang or Liming Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of Sichuan University, Chengdu, China with the reference number: K2016040.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ren, W., Bai, Y. et al. Oxyresveratrol prevents murine H22 hepatocellular carcinoma growth and lymph node metastasis via inhibiting tumor angiogenesis and lymphangiogenesis. J Nat Med 72, 481–492 (2018). https://doi.org/10.1007/s11418-018-1173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-018-1173-2

Keywords

Navigation