Advertisement

Journal of Natural Medicines

, Volume 71, Issue 4, pp 591–604 | Cite as

Resin glycosides from Convolvulaceae plants

  • Masateru Ono
Review

Abstract

Resin glycosides are well known as purgative ingredients, which are characteristic of certain crude drugs such as Mexican Scammony Radix, Orizabae Tuber, and Jalapae Tuber, all of which originate from Convolvulaceae plants. Depending on their solubility in ether, these are roughly classified into two groups—jalapin (soluble) and convolvulin (insoluble). Almost all jalapins hitherto isolated and characterized had common intramolecular macrocyclic ester structures. These are composed of 1 mol of oligoglycoside of hydroxyl fatty acid (glycosidic acid) partially acylated by some organic acids at the sugar moiety, some examples of which are ester-type dimers. On the other hand, convolvulin is regarded as an oligomer of a variety of acylated glycosidic acids. This review describes the isolation and structural elucidation of resin glycosides from some Convolvulaceae plants, including Ipomoea operculata, Pharbitis nil, Quamoclit pennata, Calystegia soldanella, and I. muricata.

Keywords

Resin glycoside Jalapin Convolvulin Convolvulaceae Glycosidic acid Hydroxyl fatty acid 

Notes

Acknowledgements

I am deeply indebted to the late Prof. Toshio Kawasaki of Pharmaceutical Sciences, Kyushu University, Prof. Kazumoto Miyahara and Prof. Naoki Noda of Pharmaceutical Sciences, Setsunan University, and Prof. Toshihiro Nohara of Pharmaceutical Sciences, Kumamoto University for their helpful suggestions and collaboration. Thanks are also due to Prof. Junei Kinjo and Dr. Masafumi Okawa of Pharmaceutical Sciences, Fukuoka University, Prof. Hitoshi Yosimitsu and Prof. Kazumi Yokomizo of Pharmaceutical Sciences, Sojo University, and Dr. Tomoko Mineno of Faculty of Pharmacy, Takasaki University of Health and Welfare for collaboration. I also sincerely thank the researchers and students who collaborated on this project. This research was supported in part by a Grant-in-Aid for Scientific Research (C) (No. 16K08306) from the Japan Society for the Promotion of Science and Research and by the Study Program/Project of Tokai University Educational System General Research Organization (Kanagawa, Japan).

References

  1. 1.
    Shellard EJ (1961) The chemistry of some Convolvulaceous resins part 1. Vera cruz jalap. Plant Med 9:102–116CrossRefGoogle Scholar
  2. 2.
    Mayer W (1855) Ueber die sogenannten jalappaharze. Justus Liebigs Ann Chem 95:129–176CrossRefGoogle Scholar
  3. 3.
    Mannich C, Schumann P (1938) Jalap resin and its principal constituent, convolvulin. Arch Pharm 276:211–226CrossRefGoogle Scholar
  4. 4.
    Noda N, Ono M, Miyahara K, Kawasaki T (1987) Resin glycosides. I. Isolation and structure elucidation of orizabin-I, II, III and IV, genuine resin glycosides from the root of Ipomoea orizabensis. Tetrahedron 43:1389–3902CrossRefGoogle Scholar
  5. 5.
    Noda N, Tsuji K, Kawasaki T, Miyahara K, Hanazono H, Yang C-R (1995) A novel resin glycoside, meremin (tuguajalapin × dimer), from Merremia hungaiensis. Chem Pharm Bull 43:1061–1063CrossRefPubMedGoogle Scholar
  6. 6.
    Bah M, Pereda-Miranda R (1997) Isolation and structural characterization of new glycolipid ester-type dimers from the resin of Ipomoea tricolor (Convolvulaceae). Tetrahedron 53:9007–9022CrossRefGoogle Scholar
  7. 7.
    Escalante-Sánchez E, Pereda-Miranda R (2007) Batatins I and II, ester-type dimers of acylated pentasaccarides from the resin glycosides of sweet potato. J Nat Prod 70:1029–1034CrossRefPubMedGoogle Scholar
  8. 8.
    Castañeda-Gómez J, Pereda-Miranda R (2011) Resin glycosides from the herbal drug jalap (Ipomoea purga). J Nat Prod 74:1148–1153CrossRefPubMedGoogle Scholar
  9. 9.
    Rosas-Rameírez D, Escalante-Sánchez E, Pereda-Miranda R (2011) Batatins III–VI, glycolipid ester-type dimers from Ipomoea batatas. Phytochemistry 72:773–780CrossRefGoogle Scholar
  10. 10.
    Castañeda-Gómez J, Figueroa-González G, Jacobo N, Pereda-Miranda R (2013) Purgin II, a resin glycoside ester-type dimer and inhibitor of multidrug efflux pumps from Ipomoea purga. J Nat Prod 76:64–71CrossRefPubMedGoogle Scholar
  11. 11.
    Rosas-Raíez D, Pereda-Miranda R (2013) Resin glycosides from the yellow-skinned variety of sweet potato (Ipomoea batatas). J Agri Food Chem 61:9488–9494CrossRefGoogle Scholar
  12. 12.
    Rosas-Raíez D, Pereda-Miranda R (2015) Batatins VIII–XI, glycolipid ester-type dimers from Ipomoea batatas. J Nat Prod 78:26–33CrossRefGoogle Scholar
  13. 13.
    Corona-Castañeda B, Rosas-Ramírez D, Castañeda-Gómez J, Aparico-Cuevas MA, Fragoso-González G, Pereda-Miranda R (2016) Resin glycosides from Ipomoea wolcottiana as modulators of the multidrug resistance phenotype in vitro. Phytochemistry 123:48–57CrossRefPubMedGoogle Scholar
  14. 14.
    Graf E, Dahlke E (1964) Structure elucidation of exogonic acid. Chem Ber 97:2785–2797CrossRefGoogle Scholar
  15. 15.
    Graf E, Dahlke E, Voigtlander HW (1965) Convolvulin; new fragment units and differentiation reactions. Arch Pharm Ber Dtsch Pharm Ges 298:81–91CrossRefGoogle Scholar
  16. 16.
    Wagner H, Kazmaier P (1977) Structure of the operculinic acid from the resin of Ipomoea operculata. Phytochemistry 16:711–714CrossRefGoogle Scholar
  17. 17.
    Ono M, Kawasaki T, Miyahara K (1989) Resin glycosides. V. Identification and characterization of the component organic and glycosidic acids of the ether-soluble crude resin glycosides (“jalapin”) from Rhizoma Jalapae Braziliensis (roots of Ipomoea operculata). Chem Pharm Bull 37:3209–3213CrossRefGoogle Scholar
  18. 18.
    Dale JA, Mosher HS (1973) Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmanndelate, and α-methoxy-α-trifluoromethylphenylacetate (MTPA) esters. J Am Chem Soc 95:512–519CrossRefGoogle Scholar
  19. 19.
    Ono M, Kubo K, Miyahara K, Kawasaki T (1989) Operculin I and II, new ether-soluble resin glycosides (“jalapin”) with fatty acid ester groups from Rhizoma Jalapae Braziliensis (roots of Ipomoea operculata). Chem Pharm Bull 37:241–244CrossRefGoogle Scholar
  20. 20.
    Ono M, Yamada F, Noda N, Kawasaki T, Miyahara K (1993) Resin glycosides. XVIII. Determination by Mosher’s method of the absolute configurations of mono- and dihydroxyfatty acids originated from resin glycosides. Chem Pharm Bull 41:1023–1026CrossRefGoogle Scholar
  21. 21.
    Shibuya H, Kawashima K, Baek NI, Narita N, Yoshikawa M, Kitagawa I (1989) Synthesis of (11S)-(+)- and (11R)-(−)-jalapinolic acids. A revision of chemical structure of merremosides B and D. Chem Pharm Bull 37:260–262Google Scholar
  22. 22.
    Okabe H, Koshito N, Tanaka K, Kawasaki T (1971) Studies on resin glycosides. II. Unhomogeneity of “pharbitin” and isolation and partial structures of pharbitic acids C and D, the major constituents of “pharbitic acid”. Chem Pharm Bull 19:2394–2403CrossRefGoogle Scholar
  23. 23.
    Ono M, Nishioka H, Fukushima T, Kunimatu H, Mine A, Kubo H, Miyahara K (2009) Components of ether-insoluble resin glycoside (rhamonvolvulin) from Rhizoma Jalapae Braziliensis. Chem Pharm Bull 57:262–268CrossRefPubMedGoogle Scholar
  24. 24.
    Jakob B, Gerlach H (1996) Relative and absolute configuration of 3,12-dihydroxypalmitic acids. Liebings Ann 1996:2123–2129CrossRefGoogle Scholar
  25. 25.
    Ono M, Fukunaga T, Kawasaki T, Miyahara K (1990) Resin glycosides. VIII. Four new glycosidic acids, operculinic acids D, E, F and G, of the ether-soluble crude resin glycosides (“jalapin”) from Rhizoma Jalapae Braziliensis (roots of Ipomoea operculata). Chem Pharm Bull 38:2650–2655CrossRefGoogle Scholar
  26. 26.
    Hara S, Okabe H, Mihashi K (1987) Gas-liquid chromatographic separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidine-4(R)-carboxylates. Chem Pharm Bull 35:501–506CrossRefGoogle Scholar
  27. 27.
    Aritomi M, Kawasaki T (1970) Partial methylation with diazomethane of the sugar moiety of some C- and O-d-glucopyranosides. Chem Pharm Bull 18:677–686CrossRefGoogle Scholar
  28. 28.
    Ono M, Nishi M, Kawasaki T, Miyahara K (1990) Resin glycosides. IX. Operculins I, II, V, VII and VIII, new ether-soluble resin glycosides of Rhizoma Jalapae Braziliensis (roots of Ipomoea operculata). Chem Pharm Bull 38:2986–2991CrossRefGoogle Scholar
  29. 29.
    Ono M, Kawasaki T, Miyahara K (1991) Resin glycosides. XI. Operculins III, IV, IX, X, XVI, XVII and XVIII, new ether-soluble resin glycosides of Rhizoma Jalapae Braziliensis (the root of Ipomoea operculata). Chem Pharm Bull 39:2534–2539CrossRefGoogle Scholar
  30. 30.
    Ono M, Fujimoto K, Kawata M, Fukunaga T, Kawasaki T, Miyahara K (1992) Resin glycosides. XIII. Operculins VI, XI, XII, XIII, XIV and XV, the ether-soluble resin glycosides (jalapin) from Rhizoma Jalapae Braziliensis (roots of Ipomoea operculata). Chem Pharm Bull 40:1400–1403CrossRefPubMedGoogle Scholar
  31. 31.
    Lawson EN, Jamie JF, Kitching W (1992) Absolute stereochemistry of exogonic acid. J Org Chem 57:353–358CrossRefGoogle Scholar
  32. 32.
    Mineno T, Kansui H (2006) High yielding methyl esterification catalyzed by indium(III) chloride. Chem Pharm Bull 54:918–919CrossRefPubMedGoogle Scholar
  33. 33.
    Ono M, Oda S, Yasuda S, Mineno T, Okawa M, Kinjo J, Miyashita H, Yoshimitsu H, Nohara T, Miyahara K (2017) Acylated glycosidic acid methyl esters generated from the convolvulin fraction of Rhizoma Jalapae Braziliensis by treatment with indium(III) chloride in methanol. Chem Pharm Bull 65:107–111CrossRefPubMedGoogle Scholar
  34. 34.
    Asahina Y, Terada S (1919) Constituents of the seeds of Pharbitis nil chois. Yakugaku Zasshi 452:821–836Google Scholar
  35. 35.
    Asahina Y, Shimizu T (1922) Constituents of the seeds of Pharbitis nil chois. II. Yakugaku Zassh 479:1–18Google Scholar
  36. 36.
    Asahina Y, Nakanishi Y (1925) Constituents of the seeds of Pharbitis nil chois. III. Yakugaku Zasshi 520:515–520CrossRefGoogle Scholar
  37. 37.
    Okabe H, Kawasaki T (1970) Structures of pharbitic acids C and D. Tetrahedron Lett 11:3123–3126CrossRefGoogle Scholar
  38. 38.
    Kawasaki T, Okabe H, Nakatsuka I (1971) Studies on resin glycosides. I. Reinvestigation of the components of pharbitin, a resin glycoside of the seeds of Pharbitis nil CHOISY. Chem Pharm Bull 19:1144–1149CrossRefGoogle Scholar
  39. 39.
    Okabe H, Kawasaki T (1972) Studies on resin glycosides. III. Complete structures of phabitic acids C and D. Chem Pharm Bull 20:514–520CrossRefGoogle Scholar
  40. 40.
    Ono M, Noda N, Kawasaki T, Miyahara K (1990) Resin glycosides. VII. Reinvestigation of the component organic and glycosidic acids of pharbitin, the crude ether-insoluble resin glycoside (“convolvulin”) of Pharbitidis Semen (seeds of Pharbitis nil). Chem Pharm Bul 38:1892–1897CrossRefGoogle Scholar
  41. 41.
    Ono M, Takagi-Taki Y, Honda-Yamada F, Noda N, Miyahara K (2010) Components of ether-insoluble resin glycoside (convolvulin) from seeds of Quamoclit pennata. Chem Pharm Bull 58:666–672CrossRefPubMedGoogle Scholar
  42. 42.
    Ono M, Takigawa A, Mineno T, Yoshimitsu H, Nohara T, Ikeda T, Fukuda-Teramachi E, Noda N, Miyahara K (2010) Acylated glycosides of hydroxy fatty acid methyl esters generated from the crude resin glycoside (pharbitin) of seeds of Pharbitis nil by treatment with indium(III) chloride in methanol. J Nat Prod 73:1846–1852CrossRefPubMedGoogle Scholar
  43. 43.
    Ono M, Kuwabata K, Kawasaki T, Miyahara K (1992) Resin glycosides. XIV. Quamoclins I–IV, new ether-soluble resin glycosides (“jalapin”) from the seeds of Quamoclit pennata. Chem Pharm Bull 40:2674–2680CrossRefGoogle Scholar
  44. 44.
    Ono M, Takaki Y, Takatsuji M, Akiyama K, Okawa M, Kinjo J, Miyashita H, Yoshimitsu H, Nohara T (2012) Three new resin glycosides and a new tetrahydropyran derivative from the seeds of Quamoclit pennata. Chem Pharm Bull 60:1083–1087CrossRefPubMedGoogle Scholar
  45. 45.
    Ono M, Imao M, Miyahara K (2010) Two new glycosidic acids, quamoclinic acids G and H, of the resin glycosides (convolvulin) from the seeds of Quamoclit pennata. Chem Pharm Bull 58:1232–1235CrossRefPubMedGoogle Scholar
  46. 46.
    Akiyama K, Mineno T, Okawa M, Kinjo J, Miyashita H, Yoshimitsu H, Nohara T, Ono M (2013) Three acylated glycosidic acid methyl esters and two acylated methyl glycosides generated from the convolvulin fraction of seeds of Quamoclit pennata by treatment with indium(III) chloride in methanol. Chem Pharm Bull 61:952–961CrossRefPubMedGoogle Scholar
  47. 47.
    Akiyama K, Yamamoto K, Mineno T, Okawa M, Kinjo J, Yoshimitsu H, Nohara T, Ono M (2014) Five new resin glycoside derivatives isolated from the convolvulin fraction of seeds of Quamoclit pennata after treatment with indium(III) chloride in methanol. Chem Pharm Bull 62:125–133CrossRefPubMedGoogle Scholar
  48. 48.
    Ono M, Akiyama K, Yamamoto K, Mineno T, Okawa M, Kinjo J, Miyashita H, Yoshimitsu H, Nohara T (2014) Four new acylated glycosidic acid methyl esters isolated from the convolvulin fraction of seeds of Quamoclit pennata after treatment with indium(III) chloride in methanol. Chem Pharm Bull 62:830–835CrossRefPubMedGoogle Scholar
  49. 49.
    Miyahara K, Du X-M, Watanabe M, Sugiura C, Yahara S, Nohara T (1996) Resin glycosides. XXIII. Two novel acylated trisaccharides related to resin glycoside from the seeds of Cuscuta chiensis. Chem Pharm Bull 44:481–485CrossRefGoogle Scholar
  50. 50.
    Gasper EM (1999) New pentasaccharide macrolactone from the European convolvulaceae Calysegia soldanella. Tetrahedron Lett 40:6861–6864CrossRefGoogle Scholar
  51. 51.
    Gasper EM (2001) Soldanelline B: the first acylated nonlinear tetrasaccharide macrolactone from the Europeane Convolvulaceae plant Calystegia soldanella. Eur J Org Chem 2:369–373CrossRefGoogle Scholar
  52. 52.
    Takigawa A, Setoguchi H, Okawa M, Kinjo J, Miyashita H, Yokomizo K, Yoshimitsu H, Nohara T, Ono M (2011) Identification and characterization of component organic and glycosidic acids of crude resin glycoside fraction from Calystegia soldanella. Chem Pharm Bull 59:1163–1168CrossRefPubMedGoogle Scholar
  53. 53.
    Takigawa A, Muto H, Kabata K, Okawa M, Kinjo J, Yoshimitsu H, Nohara T, Ono M (2011) Calysolins I—IV, resin glycosides from Calystegia soldanella. J Nat Prod 74:2414–2419CrossRefPubMedGoogle Scholar
  54. 54.
    Ono M, Takigawa A, Kanemaru Y, Kawakami G, Kabata K, Okawa M, Kinjo J, Yokomizo K, Yoshimitsu H, Nohara T (2014) Calysolins V–IX, resin glycosides from Calystegia soldanella and their antiviral activity toward herpes. Chem Pharm Bull 62:97–105CrossRefPubMedGoogle Scholar
  55. 55.
    Ono M, Kawakami G, Takigawa A, Kabata K, Okawa M, Kinjo J, Yokomizo K, Yoshimitsu H, Nohara T (2014) Calysolins X–XIII, resin glycosides from Calystegia soldanella and their antiviral activity toward herpes simplex virus. Chem Pharm Bull 62:839–844CrossRefPubMedGoogle Scholar
  56. 56.
    Ono M, Takigawa A, Muto H, Kabata K, Okawa M, Kinjo J, Yokomizo K, Yoshimitsu H, Nohara T (2015) Antiviral activity of four new resin glycosides calysolins XIV–XVII from Calystegia soldanella against herpes simplex virus. Chem Pharm Bull 63:641–648CrossRefPubMedGoogle Scholar
  57. 57.
    Noda N, Kobayashi H, Miyahara K, Kawasaki T (1988) Resin glycosides. II. Identification and characterization of the component organic and glycosidic acids of the crude resin glycoside from the seeds of Ipomoea muricata. Chem Pharm Bull 36:627–633CrossRefGoogle Scholar
  58. 58.
    Noda N, Nishi M, Miyahara K, Kawasaki T (1988) Resin glycosides. IV. Two new resin glycosides, muricatins VII and VIII, from the seeds of Ipomoea muricata. Chem Pharm Bull 36:1707–1713CrossRefGoogle Scholar
  59. 59.
    Noda N, Kobayashi H, Miyahara K, Kawasaki T (1988) Resin glycosides. III. Isolation and structural study of the genuine resin glycosides, muricatins I–VI, from the seeds of Ipomoea muricata. Chem Pharm Bull 36:920–929CrossRefGoogle Scholar
  60. 60.
    Ono M, Taketomi S, Kakiki Y, Yauda S, Okawa M, Kinjo J, Yoshimitsu H, Nohara T (2016) A new resin glycoside, muricatin IX, from the seeds of Ipomoea muricata. Chem Pharm Bull 64:1408–1410CrossRefPubMedGoogle Scholar
  61. 61.
    Ono M, Nakagawa K, Kawasaki T, Miyahara K (1993) Resin glycosides. XIX. Woodrosins I and II, ether-insoluble resin glycosides from the stems of Ipomoea tuberosa. Chem Pharm Bull 41:1925–1932CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Authors and Affiliations

  1. 1.School of AgricultureTokai UniversityKumamotoJapan

Personalised recommendations