Advertisement

Journal of Natural Medicines

, Volume 71, Issue 4, pp 642–649 | Cite as

A new biflavonoid and a new triterpene from the leaves of Garcinia paucinervis and their biological activities

  • CuiCui Jia
  • Tong Han
  • Jun Xu
  • ShengGe Li
  • YaTing Sun
  • DaHong Li
  • ZhanLin Li
  • HuiMing Hua
Original Paper

Abstract

A new biflavonoid, paucinervin K (1) and a new triterpene, 23-hydroxy-friedelin (2), together with eleven known compounds 3-13 were isolated from the leaves of Garcinia paucinervis. Their structures, including stereochemistry, were determined by spectroscopic analysis of NMR, MS, IR and ECD calculation and the octant rule. Some of the isolated compounds were tested for antiproliferative, α-glucosidase inhibitory and antioxidant activities in vitro. Compounds 1, 3, 4, 5 and 9 showed moderate preferential antioxidant and hypoglycemic activities. Compounds 36 and 9 exhibited potent growth inhibition against HepG-2 and PC-3 cell lines with IC50 values ranging from 1.02−10.05 μM.

Keywords

Garcinia paucinervis Biflavonoid Triterpene Antiproliferation Antioxidant α-Glucosidase 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31570350, 21502121), Project Funded by China Postdoctoral Science Foundation (2015M570258), General Scientific Research Projects of Department of Education in Liaoning Province (L2014382), Young Teachers’ Scientific Research Fund Project of Shenyang Pharmaceutical University (QNJJ 2013501).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Chantarasriwong O, Batova A, Chavasiri W, Theodorakis EA (2010) Chemistry and biology of the caged garcinia xanthones. Chem Eur J 16:9944–9962CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chung MI, Su HJ, Lin CN (1998) A novel triterpenoid of Garcinia subelliptica. J Nat Prod 61:1015–1016CrossRefPubMedGoogle Scholar
  3. 3.
    Stark TD, Losch S, Balemba OB, Hofmann T (2017) Two new benzoyl glucuronosyl glycerols from the leaves of Garcinia buchananii Baker. Phytochem Lett 19:187–190CrossRefGoogle Scholar
  4. 4.
    Tuansulong KA, Towatana NH, Mahabusarakam W, Pinkaew D, Fujise K (2011) Morelloflavone from Garcinia dulcis as a novel biflavonoid inhibitor of HMG-CoA reductase. Phytother Res 25:424–428PubMedGoogle Scholar
  5. 5.
    Ngoupayo J, Tabopda TK, Ali MS, Tsamo E (2008) α-Glucosidase inhibitors from Garcinia brevipedicellata (Clusiaceae). Chem Pharm Bull 56:1466–1469CrossRefPubMedGoogle Scholar
  6. 6.
    Hemshekhar M, Sunitha K, Santhosh MS, Devaraja S, Kemparaju K, Vishwanath BS, Niranjana SR, Girish KS (2011) An overview on genus Garcinia: phytochemical and therapeutical aspects. Phytochem Rev 10:325–351CrossRefGoogle Scholar
  7. 7.
    Lin YM, Anderson H, Flavin MT, Pai YHS (1997) In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod 60:884–888CrossRefPubMedGoogle Scholar
  8. 8.
    Xu WJ, Li RJ, Quasie O, Yang MH, Kong LY, Luo J (2016) Polyprenylated tetraoxygenated xanthones from the roots of Hypericum monogynum and their neuroprotective activities. J Nat Prod 79:1971–1981CrossRefPubMedGoogle Scholar
  9. 9.
    Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018CrossRefPubMedGoogle Scholar
  10. 10.
    Hu QF, Meng YL, Yao JH, Qin YH, Yang ZY, Zhao GL, Yang ZX, Gao XM, Li TF (2014) Flavonoids from Garcinia paucinervis and their biological activities. Chem Nat Compd 50:994–997CrossRefGoogle Scholar
  11. 11.
    Li P, Senthilkumar HA, Figueroa M, Wu SB, Fata JE, Kennelly EJ, Long C (2016) UPLC-QTOFMSE–guided dereplication of the endangered Chinese species Garcinia paucinervis to identify additional benzophenone derivatives. J Nat Prod 79:1619–1627CrossRefPubMedGoogle Scholar
  12. 12.
    Li DH, Li CX, Jia CC, Sun YT, Xue CM, Bai J, Hua HM, Liu XQ, Li ZL (2016) Xanthones from Garcinia paucinervis with in vitro anti-proliferative activity against HL-60 cells. Arch Pharm Res 39:172–177CrossRefPubMedGoogle Scholar
  13. 13.
    Gao XM, Yu T, Lai FSF, Zhou Y, Liu X, Qiao CF, Song JZ, Chen SL, Luo KQ, Xu HX (2010) Identification and evaluation of apoptotic compounds from Garcinia paucinervis. Bioorg Med Chem 18:4957–4964CrossRefPubMedGoogle Scholar
  14. 14.
    Wu YP, Zhao W, Xia ZY, Kong GH, Lu XP, Hu QF, Gao XM (2013) Three novel xanthones from Garcinia paucinervis and their anti-TMV activity. Molecules 18:9663–9669CrossRefPubMedGoogle Scholar
  15. 15.
    Gao XM, Yu T, Lai FSF, Pu JX, Qiao CF, Zhou Y, Liu X, Song JZ, Luo KQ, Xu HX (2010) Novel polyisoprenylated benzophenone derivatives from Garcinia paucinervis. Tetrahedron Lett 51:2442–2446CrossRefGoogle Scholar
  16. 16.
    Fan QF, Na Z, Hu HB, Xu YK, Tang T (2012) Chemical constituents from stem barks of Garcinia paucinervis. Chin Tradit Herb Drugs 43:436–439Google Scholar
  17. 17.
    Sun YT, Li DH, Jia CC, Xue CM, Bai J, Li ZL, Hua HM (2016) Three new xanthones from the leaves of Garcinia lancilimba. J Nat Med 70:173–178CrossRefPubMedGoogle Scholar
  18. 18.
    Niu SL, Li ZL, Ji F, Liu GY, Zhao N, Liu XQ, Jing YK, Hua HM (2012) Xanthones from the stem bark of Garcinia bracteata with growth inhibitory effects against HL-60 cells. Phytochemistry 77:280–286CrossRefPubMedGoogle Scholar
  19. 19.
    Ji F, Li ZL, Liu GF, Niu SL, Zhao N, Liu XQ, Hua HM (2012) Xanthones with antiproliferative effects on prostate cancer cells from the stem bark of Garcinia xanthochymus. Nat Prod Commun 7:53–56PubMedGoogle Scholar
  20. 20.
    Jing WY, Jiang C, Ji F, Hua HM, Li ZL (2013) Chemical constituents from the stem barks of Garcinia multiflora. J Asian Nat Prod Res 15:1152–1157CrossRefPubMedGoogle Scholar
  21. 21.
    Wang LL, Li ZL, Xu YP, Liu XQ, Pei YH, Jing YK, Hua HM (2008) A new cytotoxic caged polyprenylated xanthone from the resin of Garcinia hanburyi. Chin Chem Lett 19:1221–1223CrossRefGoogle Scholar
  22. 22.
    Wang LL, Li ZL, Song DD, Sun L, Pei YH, Jing YK, Hua HM (2008) Two novel triterpenoids with antiproliferative and apoptotic activities in human leukemia cells isolated from the resin of Garcinia hanburyi. Planta Med 74:1735–1740CrossRefPubMedGoogle Scholar
  23. 23.
    Messi BB, Karine NI, Barbara HA, Lannang AM, Nkengfack AE, Wolfender JL, Hostettmann K, Bringmann G (2012) Preussianone, a new flavanone-chromone biflavonoid from Garcinia preussii Engl. Molecules 17:6114–6125CrossRefPubMedGoogle Scholar
  24. 24.
    Gaffield W (1970) Circular dichroism, optical rotatory dispersion and absolute configuration of flavanones, 3-hydroxyflavanones and their glycosides. Tetrahedron 26:4093–4108CrossRefGoogle Scholar
  25. 25.
    Wu LJ (1989) Optical rotatory dispersion and circular dichroic spectroscopy are applied in organic chemistry. J Shenyang Pharm Univ 6:148–156Google Scholar
  26. 26.
    Fuller RW, Blunt JW, Boswell JL, Cardellina JH, Boyd MR (1999) Guttiferone F, the first prenylated benzophenone from Allanblackia stuhlmannii. J Nat Prod 62:130–132CrossRefPubMedGoogle Scholar
  27. 27.
    Shen J, Yang JS (2007) A novel benzophenone from Garcinia cowa. Acta Chim Sin 65:1675–1678Google Scholar
  28. 28.
    Magadula JJ (2010) A bioactive isoprenylated xanthone and other constituents of Garcinia edulis. Fitoterapia 81:420–423CrossRefPubMedGoogle Scholar
  29. 29.
    Huang ZJ, Yang RY, Guo ZY, She ZG, Lin YC (2010) A new xanthone derivative from mangrove endophytic fungus No. ZSU-H16. Chem Nat Compd 46:348–351CrossRefGoogle Scholar
  30. 30.
    Ee GCL, Foo CH, Jong VYM, Ismail NH, Sukari MA, Yap YHT, Awang K (2012) A new xanthone from Garcinia nitida. J Nat Prod 26:830–835CrossRefGoogle Scholar
  31. 31.
    Cortez DAG, Young MCM, Marston A, Wolfender JL, Hostettmann K (1998) Xanthones, triterpenes and a biphenyl from Kielmeyera coriacea. Phytochemistry 47:1367–1374CrossRefGoogle Scholar
  32. 32.
    Monache GD, Monache FD, Waterman PG, Crichton EG, Lima RA (1984) Minor xanthones from Rheedia gardneriana. Phytochemistry 23:1757–1759CrossRefGoogle Scholar
  33. 33.
    Yu Y, Wang SS, Ding FG, Zhu JB, Zhao WJ (2010) Isolation and identification of the chemical constituents from Swertia yuannanensis. Chin J Med Chem 20:125–128Google Scholar
  34. 34.
    Liu HQ, An J, Lv HC (2015) Chemical constituents from Smilax hypoglauca. Chin J Exp Tradit Med Form 21:59–61Google Scholar
  35. 35.
    Lu GS, Lu WJ, Chen JY, Tan X, Huang JQ, Huang ZF (2015) Chemical constituents from Macrosolen cochinchinensis. Chin J Exp Tradit Med Form 21:44–46Google Scholar
  36. 36.
    Li FF, Guo ZQ, Chai XY, Tu PF (2012) Triterpenoids from the stems of Casearia velutina Bl. J Chin Pharm Sci 21:273–277Google Scholar
  37. 37.
    Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T (1989) Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related ployphenols on superoxide anion radical, and on 1,1-diphenyl-2-picryhydrazyl radical. Chem Pharm Bull 37:2016–2021CrossRefGoogle Scholar
  38. 38.
    Chen GL, Chen SG, Chen F, Xie YQ, Han MD, Luo CX, Zhao YY, Gao YQ (2016) Nutraceutical potential and antioxidant benefits of selected fruit seeds subjected to an in vitro digestion. J Funct Foods 20:317–331CrossRefGoogle Scholar
  39. 39.
    Bai Y, Xu Y, Chang JW, Wang XX, Zhao YL, Yu ZG (2016) Bioactives from stems and leaves of mung beans (Vigna radiata L.). J Funct Foods 25:314–322CrossRefGoogle Scholar
  40. 40.
    Sukandar ER, Siripong P, Khumkratok S, Santi TP (2016) New depsidones and xanthone from the roots of Garcinia schomburgkiana. Fitoterapia 111:73–77CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2017

Authors and Affiliations

  • CuiCui Jia
    • 1
    • 2
  • Tong Han
    • 1
    • 2
  • Jun Xu
    • 1
    • 2
  • ShengGe Li
    • 1
    • 2
  • YaTing Sun
    • 1
    • 2
  • DaHong Li
    • 1
    • 2
  • ZhanLin Li
    • 1
    • 2
  • HuiMing Hua
    • 1
    • 2
  1. 1.Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of EducationShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  2. 2.School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China

Personalised recommendations