Skip to main content

Advertisement

Log in

Involvement of monoaminergic systems in anxiolytic and antidepressive activities of the standardized extract of Cocos nucifera L.

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Extracts from the husk fiber of Cocos nucifera are used in folk medicine, but their actions on the central nervous system have not been studied. Here, the anxiolytic and antidepressant effects of the standardized hydroalcoholic extract of C. nucifera husk fiber (HECN) were evaluated. Male Swiss mice were treated with HECN (50, 100, or 200 mg/kg) 60 min before experiments involving the plus maze test, hole-board test, tail suspension test, and forced swimming test (FST). HECN was administered orally (p.o.) in acute and repeated-dose treatments. The forced swimming test was performed with dopaminergic and noradrenergic antagonists, as well as a serotonin release inhibitor. Administration of HECN in the FST after intraperitoneal (i.p.) pretreatment of mice with sulpiride (50 mg/kg), prazosin (1 mg/kg), or p-chlorophenylalanine (PCPA, 100 mg/kg) caused the actions of these three agents to be reversed. However, this effect was not observed after pretreating the animals with SCH23390 (15 µg/kg, i.p.) or yohimbine (1 mg/kg, i.p.) The dose chosen for HECN was 100 mg/kg, p.o., which increased the number of entries as well as the permanence in the open arms of the maze after acute and repeated doses. In both the forced swimming and the tail suspension tests, the same dose decreased the time spent immobile but did not disturb locomotor activity in an open-field test. The anxiolytic effect of HECN appears to be related to the GABAergic system, while its antidepressant effect depends upon its interaction with the serotoninergic, noradrenergic (α1 receptors), and dopaminergic (D2 dopamine receptors) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BUP:

Bupropion

CNS:

Central nervous system

DZP:

Diazepam

EPM:

Elevated plus maze test

FLUM:

Flumazenil

FLX:

Fluoxetine

FST:

Forced swimming test

HECN:

Hydroalcoholic extract of C. nucifera husk fiber

HPLC:

High-performance liquid cromathography

IMP:

Imipramine

NA:

Noradrenaline

NEOA:

Number of entries in open arms

OFT:

Open-field test

PCPA:

p-Chlorophenylalanine

PRA:

Prazosin

SLA:

Spontaneous locomotor activity test

SUL:

Sulpiride

TPC:

Determination of total phenolic content

TPOA:

Time of permanence in open arms

TST:

Tail suspension test

YOH:

Yohimbine

References

  1. DebMandal M, Mandal S (2011) Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med 4(3):241–247

    Article  PubMed  Google Scholar 

  2. Aragão W (2002) Coco: pós-colheita. Série frutas do Brasil. Embrapa Informação tecnológica, Brasília

    Google Scholar 

  3. Senhoras E (2004) Agroindustrial green coconut chain opportunities: from green coconut nothing is lost, everything is used. Urutágua 5:1–10 (in Portuguese)

    Google Scholar 

  4. Carrijo O (2002) Fiber from the bark of green coconut as an agricultural substrate. Hortic Bras 20(4):533–535 (in Portuguese)

    Article  Google Scholar 

  5. Esquenazi D, Wigg M, Miranda M, Rodrigues H, Tostes J, Rozental S, da Silva A, Alviano C (2002) Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract. Res Microbiol 153(10):647–652

    Article  CAS  PubMed  Google Scholar 

  6. Calzada F, Yépez-Mulia L, Tapia-Contreras A (2007) Effect of Mexican medicinal plant used to treat trichomoniasis on Trichomonas vaginalis trophozoites. J Ethnopharmacol 113(2):248–251

    Article  PubMed  Google Scholar 

  7. Costa C, Bevilaqua C, Morais S, Camurça-Vasconcelos A, Maciel M, Braga R, Oliveira L (2010) Anthelmintic activity of Cocos nucifera L. on intestinal nematodes of mice. Res Vet Sci 88(1):101–103

    Article  CAS  PubMed  Google Scholar 

  8. Huang Y, Nassar B, Horrobin D (1989) The prostaglandin outflow from perfused mesenteric vasculature of rats fed different fats. Prostaglandins Leukot Essent Fatty Acids 35(2):73–79

    Article  CAS  PubMed  Google Scholar 

  9. Koschek P, Alviano D, Alviano C, Gattass C (2007) The husk fiber of Cocos nucifera L. (Palmae) is a source of anti-neoplastic activity. Braz J Med Biol Res 40(10):1339–1343

    Article  CAS  PubMed  Google Scholar 

  10. Rinaldi S, Silva D, Bello F, Alviano C, Alviano D, Matheus M, Fernandes P (2009) Characterization of the antinociceptive and anti-inflammatory activities from Cocos nucifera L. (Palmae). J Ethnopharmacol 122(3):541–546

    Article  PubMed  Google Scholar 

  11. Lima E, Sousa C, Meneses L, Ximenes N, Santos Júnior M, Vasconcelos G, Lima N, Patrocínio M, Macedo D, Vasconcelos S (2015) Cocos nucifera (L.) (Arecaceae): a phytochemical and pharmacological review. Braz J Med Biol Res 48(11):953–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mendonça-Filho Rodrigues I, Alviano D, Santos A, Soares R, Alviano C, Lopes A, Rosa Mdo S (2004) Leishmanicidal activity of polyphenolic-rich extract from husk fiber of Cocos nucifera. Linn (Palmae). Res Microbiol 155(3):136–143

    Article  PubMed  Google Scholar 

  13. Silva R, Oliveira e Silva D, Fontes H, Alviano C, Fernandes P, Alviano D (2013) Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var typica. BMC Complement Altern Med 13:107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Assini F (2013) Pharmacological effects of aqueous extract of Solidago chilensis Meyen in mice. Rev Bras Plant Med 15(1):130–134 (in Portuguese)

    Article  Google Scholar 

  15. Brochet D, Chermat R, DeFeudis F, Drieu K (1999) Effects of single intraperitoneal injections of an extract of Ginkgo biloba (EGb 761) and its terpene trilactone constituents on barbital-induced narcosis in the mouse. Gen Pharmacol 33(3):249–256

    Article  CAS  PubMed  Google Scholar 

  16. Citó M, Silva M, Santos L, Fernandes M, Melo F, Aguiar J, Lopes I, Sousa P, Vasconcelos S, Macêdo D, Sousa F (2015) Antidepressant-like effect of Hoodia gordonii in a forced swimming test in mice: evidence for involvement of the monoaminergic system. Braz J Med Biol Res 48(1):57–64

    Article  PubMed  Google Scholar 

  17. Shah P, Trivedi N, Bhatt J, Hemavathi K (2006) Effect of Withania somnifera on forced swimming test induced immobility in mice and its interaction with various drugs. Indian J Physiol Pharmacol 50(4):409–415

    CAS  PubMed  Google Scholar 

  18. Lima E, de Sousa C, Vasconcelos G, Meneses L, E Silva Pereira Y, Ximenes N, Santos Júnior M, Matos N, Brito R, Miron D, Leal L, Macêdo D, Vasconcelos S (2016) Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice. J Nat Med 70(3):510–521

    Article  PubMed  Google Scholar 

  19. Kaster M, Santos A, Rodrigues A (2005) Involvement of 5-HT1A receptors in the antidepressant-like effect of adenosine in the mouse forced swimming test. Brain Res Bull 67(1–2):53–61

    Article  CAS  PubMed  Google Scholar 

  20. Machado D, Kaster M, Binfaré R, Dias M, Santos A, Pizzolatti M, Brighente I, Rodrigues A (2007) Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: evidence for the involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 31(2):421–428

    Article  CAS  PubMed  Google Scholar 

  21. Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21(2):205–235

    Article  CAS  PubMed  Google Scholar 

  22. Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacol 92(2):180–185

    Article  CAS  Google Scholar 

  23. Clark G, Koster A, Person D (1971) Exploratory behavior in chronic disulfoton poisoning in mice. Psychopharmacology 20:169–171

    Article  CAS  Google Scholar 

  24. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    Article  CAS  PubMed  Google Scholar 

  25. Porsolt R, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336

    CAS  PubMed  Google Scholar 

  26. Russell J, Douglas A, Brunton P (2008) Reduced hypothalamo-pituitary-adrenal axis stress responses in late pregnancy: central opioid inhibition and noradrenergic mechanisms. Ann N Y Acad Sci 1148:428–438

    Article  CAS  PubMed  Google Scholar 

  27. Starr B, Starr M (1986) Differential effects of dopamine D1 and D2 agonists and antagonists on velocity of movement, rearing and grooming in the mouse. Implications for the roles of D1 and D2 receptors. Neuropharmacology 25(5):455–463

    Article  CAS  PubMed  Google Scholar 

  28. Takeda H, Tsuji M, Matsumiya T (1998) Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur J Pharmacol 350(1):21–29

    Article  CAS  PubMed  Google Scholar 

  29. Blanchard D, Griebel G, Blanchard R (2001) Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25(3):205–218

    Article  CAS  PubMed  Google Scholar 

  30. Hanrahan J, Chebib M, Johnston G (2011) Flavonoid modulation of GABA(A) receptors. Br J Pharmacol 163(2):234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jäger A, Saaby L (2011) Flavonoids and the CNS. Molecules 16(2):1471–1485

    Article  PubMed  Google Scholar 

  32. Nilsson J, Sterner O (2011) Modulation of GABA(A) receptors by natural products and the development of novel synthetic ligands for the benzodiazepine binding site. Curr Drug Targets 12(11):1674–1688

    Article  CAS  PubMed  Google Scholar 

  33. Wolfman C, Viola H, Paladini A, Dajas F, Medina J (1994) Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav 47(1):1–4

    Article  CAS  PubMed  Google Scholar 

  34. Campbell E, Chebib M, Johnston G (2004) The dietary flavonoids apigenin and (−)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABA(A) receptors. Biochem Pharmacol 68(8):1631–1638

    Article  CAS  PubMed  Google Scholar 

  35. Willner P (1990) Animal models of depression: an overview. Pharmacol Ther 45(3):425–455

    Article  CAS  PubMed  Google Scholar 

  36. Ramireza K, Sheridana JF (2016) Antidepressant imipramine diminishes stress-induced inflammation in the periphery and central nervous system and related anxiety- and depressive- like behaviors. Brain Behav Immun 57:293–303

    Article  Google Scholar 

  37. Ren L, Wang F, Xu Z, Chan W, Zhao C, Xue H (2010) GABA(A) receptor subtype selectivity underlying anxiolytic effect of 6-hydroxyflavone. Biochem Pharmacol 79(9):1337–1344

    Article  CAS  PubMed  Google Scholar 

  38. Waldmeier P (1987) Amine oxidases and their endogenous substrates (with special reference to monoamine oxidase and the brain). J Neural Transm Suppl 23:55–72

    CAS  PubMed  Google Scholar 

  39. De Boer A, Gaillard P (2007) Drug targeting to the brain. Annu Rev Pharmacol Toxicol 47:323–355

    Article  PubMed  Google Scholar 

  40. Németh K, Plumb G, Berrin J, Juge N, Jacob R, Naim H, Williamson G, Swallow D, Kroon P (2003) Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr 42(1):29–42

    Article  PubMed  Google Scholar 

  41. Youdim K, Dobbie M, Kuhnle G, Proteggente A, Abbott N, Rice-Evans C (2003) Interaction between flavonoids and the blood–brain barrier: in vitro studies. J Neurochem 85(1):180–192

  42. Maletic V, Robinson M, Oakes T, Iyengar S, Ball S, Russell J (2007) Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 61(12):2030–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dailly E, Chenu F, Renard C, Bourin M (2004) Dopamine, depression and antidepressants. Fundam Clin Pharmacol 18(6):601–607

    Article  CAS  PubMed  Google Scholar 

  44. Martin-Soelch C (2009) Is depression associated with dysfunction of the central reward system? Biochem Soc Trans 37(1):313–317

    Article  CAS  PubMed  Google Scholar 

  45. Meyer J, McNeely H, Sagrati S, Boovariwala A, Martin K, Verhoeff N, Wilson A, Houle S (2006) Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am J Psychiatry 163(9):1594–1602

    Article  PubMed  Google Scholar 

  46. Vaugeois J, Pouhé D, Zuccaro F, Costentin J (1996) Indirect dopamine agonists effects on despair test: dissociation from hyperactivity. Pharmacol Biochem Behav 54(1):235–239

    Article  CAS  PubMed  Google Scholar 

  47. O’Leary O, Bechtholt A, Crowley J, Hill T, Page M, Lucki I (2007) Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology 192(3):357–371

    Article  PubMed  Google Scholar 

  48. Redrobe J, Bourin M, Colombel M, Baker G (1998) Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity. Psychopharmacology 138(1):1–8

    Article  CAS  PubMed  Google Scholar 

  49. Szewczyk B, Poleszak E, Wlaź P, Wróbel A, Blicharska E, Cichy A, Dybała M, Siwek A, Pomierny-Chamioło L, Piotrowska A, Brański P, Pilc A, Nowak G (2009) The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 33(2):323–329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Council for Technological and Scientific Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Ceará Foundation for the Support of Scientific and Technological Development (FUNCAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvânia Maria Mendes Vasconcelos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, E.B.C., de Sousa, C.N.S., Meneses, L.N. et al. Involvement of monoaminergic systems in anxiolytic and antidepressive activities of the standardized extract of Cocos nucifera L.. J Nat Med 71, 227–237 (2017). https://doi.org/10.1007/s11418-016-1053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-016-1053-6

Keywords

Navigation