Journal of Natural Medicines

, Volume 71, Issue 1, pp 216–226 | Cite as

Mangostanaxanthones III and IV: advanced glycation end-product inhibitors from the pericarp of Garcinia mangostana

  • Hossam M. Abdallah
  • Hany M. El-Bassossy
  • Gamal A. Mohamed
  • Ali M. El-Halawany
  • Khalid Z. Alshali
  • Zainy M. Banjar
Original Paper


Advanced glycation end-products (AGEs) are associated with a non-enzymatic reaction between the amino group of a protein and the carbonyl group of a sugar during hyperglycemia. The precipitation of AGEs in different tissues leads to many complications, such as endothelial dysfunction, cardiovascular complications, atherosclerosis, retinopathy, neuropathy, and Alzheimer’s disease. Garcinia mangostana L. (Clusiaceae) (GM) was selected owing to the ability of its polar and non-polar fractions to inhibit AGE formation. For the first time, the bioguided fractionation of its pericarp MeOH extract (GMT) gave rise to two new xanthones, namely, mangostanaxanthones III (1) and IV (3), in addition to six known compounds, β-mangostin (2), garcinone E (4), rubraxanthone (5), α-mangostin (6), garcinone C (7), and 9-hydroxycalabaxanthone (8), from the non-polar faction. Their structures were verified by various spectroscopic methods, including 1D and 2D NMR studies and high-resolution MS data. All of the isolated xanthones significantly inhibited both sugar (ribose) and dicarbonyl compound (methylglyoxal)-induced protein glycation in a dose-dependent manner. This is explained by the ability of the isolated xanthones to inhibit protein oxidation, as indicated by the decreases in dityrosine and N′-formylkynurenine formation.


Garcinia mangostana Mangostanaxanthone Clusiaceae Diabetes Glycation end-products 



This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, the Kingdom of Saudi Arabia, Award Number 12-BIO3087-03. The authors also acknowledge with thanks the Science and Technology Unit, King Abdulaziz University, for the technical support.


  1. 1.
    Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Seidler NW (2013) Basic biology of GAPDH. Adv Exp Med Biol 985:1–36CrossRefPubMedGoogle Scholar
  3. 3.
    Lv L, Shao X, Chen H, Ho C-T, Sang S (2011) Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem Res Toxicol 24:579–586CrossRefPubMedGoogle Scholar
  4. 4.
    Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47:3–27CrossRefPubMedGoogle Scholar
  5. 5.
    Ahmed N, Babaei-Jadidi R, Howell SK, Thornalley PJ, Beisswenger PJ (2005) Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care 28:2465–2471CrossRefPubMedGoogle Scholar
  6. 6.
    Shanlin FU, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18CrossRefGoogle Scholar
  7. 7.
    Li L, Han A-R, Kinghorn AD, Frye RF, Derendorf H, Butterweck V (2013) Pharmacokinetic properties of pure xanthones in comparison to a mangosteen fruit extract in rats. Planta Med 79:646–653CrossRefPubMedGoogle Scholar
  8. 8.
    Tilton RG, Chang K, Hasan KS, Smith SR, Petrash JM, Misko TP, Moore WM, Currie MG, Corbett JA, McDaniel ML (1993) Prevention of diabetic vascular dysfunction by guanidines: inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes 42:221–232CrossRefPubMedGoogle Scholar
  9. 9.
    Sadowska-Bartosz I, Galiniak S, Bartosz G (2014) Kinetics of glycoxidation of bovine serum albumin by methylglyoxal and glyoxal and its prevention by various compounds. Molecules 19:4880–4896CrossRefPubMedGoogle Scholar
  10. 10.
    Okada Y, Okada M (2015) Effects of methanolic extracts from edible plants on endogenous secretory receptor for advanced glycation end products induced by the high glucose incubation in human endothelial cells. J Pharm Bioallied Sci 7:145CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Devalaraja S, Jain S, Yadav H (2011) Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Res Int 44:1856–1865CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Abdallah H, El-Bassossy H, El-Halawany A, Mohamed G, Alshali K, Banjar Z (2015) PP. 14.02: Psiadia punctulata and Garcinia mangostana have potent vasorelaxant activity on isolated rat aorta. J Hypertens 33:e246CrossRefGoogle Scholar
  13. 13.
    Abdallah HM, El-Bassossy H, Mohamed GA, El-Halawany AM, Alshali KZ, Banjar ZM (2016) Phenolics from Garcinia mangostana inhibit advanced glycation endproducts formation: effect on Amadori products, cross-linked structures and protein thiols. Molecules 21:251CrossRefPubMedGoogle Scholar
  14. 14.
    Jia B, Li S, Hu X, Zhu G, Chen W (2015) Recent research on bioactive xanthones from natural medicine: Garcinia hanburyi. AAPS Pharm Sci Tech 16:742–758CrossRefGoogle Scholar
  15. 15.
    Morel C, Séraphin D, Oger J-M, Litaudon M, Sévenet T, Richomme P, Bruneton J (2000) New xanthones from Calophyllum caledonicum. J Nat Prod 63:1471–1474CrossRefPubMedGoogle Scholar
  16. 16.
    Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  17. 17.
    Mohamed GA, Ibrahim SR, Shaaban MI, Ross SA (2014) Mangostanaxanthones I and II, new xanthones from the pericarp of Garcinia mangostana. Fitoterapia 98:215–221CrossRefPubMedGoogle Scholar
  18. 18.
    Suksamrarn S, Suwannapoch N, Ratananukul P, Aroonlerk N, Suksamrarn A (2002) Xanthones from the Green Fruit Hulls of Garcinia mangostana. J Nat Prod 65:761–763CrossRefPubMedGoogle Scholar
  19. 19.
    Iwo MI, Soemardji AA, Hanafi M (2013) Sunscreen activity of [alpha]-mangostin from the pericarps of Garcinia mangostana. J Appl Pharm Sci 3:70Google Scholar
  20. 20.
    Ha LD, Hansen PE, Vang O, Duus F, Pham HD, Nguyen L-HD (2009) Cytotoxic geranylated xanthones and O-alkylated derivatives of alpha.-mangostin. Chem Pharm Bull 57:830–834CrossRefPubMedGoogle Scholar
  21. 21.
    Sen AK, Sarkar KK, Mazumder PC, Banerji N, Uusvuori R, Hase TA (1982) The structures of garcinones A, B and C: three new xanthones from Garcinia mangostana. Phytochemistry 21:1747–1750CrossRefGoogle Scholar
  22. 22.
    Ampofo SA, Waterman PG (1986) Xanthones from three Garcinia species. Phytochemistry 25:2351–2355CrossRefGoogle Scholar
  23. 23.
    Sen AK, Sarkar KK, Mazumder PC, Banerji N, Uusvuori R, Haset TA (1980) A xanthone from Garcinia mangostana. Phytochemistry 19:2223–2225CrossRefGoogle Scholar
  24. 24.
    Wu C-H, Huang S-M, Lin J-A, Yen G-C (2011) Inhibition of advanced glycation endproduct formation by foodstuffs. Food Funct 2:224–234CrossRefPubMedGoogle Scholar
  25. 25.
    Bechtold U, Rabbani N, Mullineaux PM, Thornalley PJ (2009) Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves. Plant J 59:661–671CrossRefPubMedGoogle Scholar
  26. 26.
    Mahabusarakam W, Proudfoot J, Taylor W, Croft K (2000) Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangostin. Free Radic Res 33:643–659CrossRefPubMedGoogle Scholar
  27. 27.
    Thong NM, Quang DT, Bui NHT, Dao DQ, Nam PC (2015) Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): a theoretical study. Chem Phys Lett 625:30–35CrossRefGoogle Scholar
  28. 28.
    Jariyapongskul A, Areebambud C, Suksamrarn S, Mekseepralard C (2015) Alpha-mangostin attenuation of hyperglycemia-induced ocular hypoperfusion and blood retinal barrier leakage in the early stage of type 2 diabetes rats. Biomed Res Int 2015:785826CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Minami H, Kinoshita M, Fukuyama Y, Kodama M, Yoshizawa T, Sugiura M, Nakagawa K, Tago H (1994) Antioxidant xanthones from Garcinia subelliptica. Phytochemistry 36:501–506CrossRefGoogle Scholar
  30. 30.
    Cahyana AH, Wibowo W, Abdullah I (2015) Prenylation of xanthone extract from Mangosteen (Garcinia mangostana L.) rind by using superbase catalyst of [gamma]-alumina/NaOH/Na and antioxidant activity test. Asian J Chem 27:2228CrossRefGoogle Scholar
  31. 31.
    Ferchichi L, Derbré S, Mahmood K, Touré K, Guilet D, Litaudon M, Awang K, Hadi AHA, Le Ray AM, Richomme P (2012) Bioguided fractionation and isolation of natural inhibitors of advanced glycation end-products (AGEs) from Calophyllum flavoramulum. Phytochemistry 78:98–106CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Natural Products, Faculty of PharmacyKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Pharmacognosy, Faculty of PharmacyCairo UniversityCairoEgypt
  3. 3.Department of Pharmacology, Faculty of PharmacyKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Pharmacology, Faculty of PharmacyZagazig UniversityZagazigEgypt
  5. 5.Department of Pharmacognosy, Faculty of PharmacyAl-Azhar University, Assiut BranchAssiutEgypt
  6. 6.Department of Medicine, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
  7. 7.Department of Clinical Biochemistry, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations