Advertisement

Journal of Natural Medicines

, Volume 71, Issue 1, pp 170–180 | Cite as

Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (V): coumarins and alkaloids from Boenninghausenia japonica and Ruta graveolens

  • Daisuke Nakano
  • Kenji Ishitsuka
  • Narumi Matsuda
  • Ai Kouguchi
  • Ryota Tsuchihashi
  • Masafumi Okawa
  • Hikaru Okabe
  • Kazuo Tamura
  • Junei Kinjo
Original Paper

Abstract

During the course of our studies towards the identification of promising chemotherapeutic candidates from plants against two human T-cell lymphotropic virus type I-infected T-cell lines (MT-1 and MT-2), we screened 17 extracts from 9 rutaceous plants against MT-1 and MT-2 cells. The extracts from the aerial parts and roots of Boenninghausenia japonica, as well as the leaves and roots of Ruta graveolens showed potent antiproliferative effects. After activity-guided fractionation, we isolated 44 compounds from two rutaceous plants, including three new compounds (1–3), which were classified into 26 coumarin analogs (13 coumarins, 8 furanocoumarins, 4 dihydrofuranocoumarins and one dihydropyranocoumarin), 15 alkaloid analogs (7 quinolone alkaloids, 4 acridone alkaloids, 3 furanoquinoline alkaloids and one tetrahydroacridone alkaloid) and 3 flavonoid glycosides. Structure–activity relationship studies were also evaluated. The coumarin compounds (2, 3 and 7–9) bearing a 3-dimethylallyl moiety showed potent activity. Similarly, of all the furanocoumarins evaluated in the current study, compound 17 bearing a 3-dimethylallyl group also showed potent activity. A dihydrofuranocoumarin (27) bearing a 3-dimethylallyl moiety showed the most potent activity. Following 27, compound 28 showed potent activity. These results therefore suggested that the presence of a 3-dimethylallyl moiety was important to the antiproliferative activity of these coumarin analogs.

Keywords

Screening Adult T-cell leukemia/lymphoma Boenninghausenia japonica Ruta graveolens Coumarin Alkaloid 

References

  1. 1.
    Ishitsuka K, Tamura K (2008) Treatment of adult T-cell leukemia/lymphoma: past, present, and future. Eur J Haematol 80:185–196CrossRefPubMedGoogle Scholar
  2. 2.
    Nakano D, Ishitsuka K, Hatsuse T, Tsuchihashi R, Okawa M, Okabe H, Tamura K, Kinjo J (2011) Screening of promising chemotherapeutic candidates against human adult T-cell leukemia/lymphoma from plants: active principles structure–activity relationships with withanolides. J Nat Med 65:559–567CrossRefPubMedGoogle Scholar
  3. 3.
    Nakano D, Ishitsuka K, Katsuya H, Kunami N, Nogami R, Yoshimura Y, Matsuda M, Kamikawa M, Tsuchihashi R, Okawa M, Ikeda T, Nohara T, Tamura K, Kinjo J (2013) Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (II): apoptosis of antiproliferactive principle (24,25-dihydrowithanolide D) against ATL cell lines and structure–activity relationships with withanolides isolated from solanaceous plants. J Nat Med 67:415–420CrossRefPubMedGoogle Scholar
  4. 4.
    Nakano D, Ishitsuka K, Kamikawa M, Matsuda M, Tsuchihashi R, Okawa M, Okabe H, Tamura K, Kinjo J (2013) Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (III). J Nat Med 67:894–903CrossRefPubMedGoogle Scholar
  5. 5.
    Nakano D, Ishitsuka K, Ikeda M, Tsuchihashi R, Okawa M, Okabe H, Tamura K, Kinjo J (2015) Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (IV): phenanthroindolizidine alkaloids from Tylophora tanakae leaves. J Nat Med 69:397–401CrossRefPubMedGoogle Scholar
  6. 6.
    Harborne JB (1988) The flavonoids. Advances in research. Chapman and Hall, New YorkCrossRefGoogle Scholar
  7. 7.
    Chaya N, Terauchi K, Yamagata Y, Kinjo J, Okabe H (2004) Antiproliferative constituents in plants 14. Alkaloids from Boenninghausenia japonica Nakai. Biol Pharm Bull 27:1312–1316CrossRefPubMedGoogle Scholar
  8. 8.
    Dieter B, Kalman S, Johannes R (1977) 13C-NMR-Spektren einiger C-3 prenylierter Rutaceen-Cumarine. Arch Pharm 310:390–393CrossRefGoogle Scholar
  9. 9.
    Dieter B, Zsuzsa R, Iuliu M, Johannes R (1978) Beitrag zur 13C-NMR-Spektroskopie von Rutaceen-Cumarinen. Arch Pharm 311:1026–1029CrossRefGoogle Scholar
  10. 10.
    Shibata S, Noguchi M (1977) Two new coumarins in Boenninghausenia albiflora. Phytochemistry 16:291–293CrossRefGoogle Scholar
  11. 11.
    John L, Marawan S (1984) Coumarin sulphates of Seseli libanotis. Phytochemistry 23:863–865CrossRefGoogle Scholar
  12. 12.
    Joshi PC, Mandal S, Das PC, Chatterjee A (1993) Twominor coumarins of Boenninghausenia albiflora. Phytochemistry 32:481–483CrossRefGoogle Scholar
  13. 13.
    Sudam CB, Durga PD, Rabindra NT (1984) Bhubaneswin a new blcoumarin. Heterocycle 22:333–337CrossRefGoogle Scholar
  14. 14.
    Kinoshita T, Jin BW, Feng CH (1996) The isolation of a prenylcoumarin of chemotaxonomic significance from Murraya paniculata var. omphalocarpa. Phytochemistry 43:125–128CrossRefGoogle Scholar
  15. 15.
    Kozawa M, Baba K, Minami M, Nitta H, Hata K (1974) Uber die cumarine der Boenninghausenia japonica (sieb.) Nakai. Chem Pharm Bull 22:2746–2749CrossRefGoogle Scholar
  16. 16.
    Elgamal MHA, Elewa NH, Elkhrisy EAM, Duddeck H (1979) 13C NMR chemical shifts and carbon-proton coupling constants of some furocoumarins and furochromones. Phytochemistry 18:139–143CrossRefGoogle Scholar
  17. 17.
    Adeleke CA, Johannes R (2000) Minor furocoumarins of Murraya koenigii. Fitoteraoia 71:334–337CrossRefGoogle Scholar
  18. 18.
    Xue MN, Sheng HL, Li XW, Ling L, Li HG, Han DS (2004) Two new coumarin derivatives from the roots of Heracleum rapula. Lett Planta Med 70:578–581CrossRefGoogle Scholar
  19. 19.
    Abyshev AZ, Agaev EM, Balabudkin MA (1993) Rutarin from the roots of Seseli grandivittatum. Chem Nat Compd 29:250–251CrossRefGoogle Scholar
  20. 20.
    Fernando M, Antonio E, Lucia M, Jose G, Giselle M (1996) Alkaloids and coumarins from esenbeckia species. Phytochemistry 41:647–649CrossRefGoogle Scholar
  21. 21.
    Purusotam B, Shigetoshi K, Krishna M, Mangala DM, Tsuneo N (1993) Constituents of Boenninghausenia albiflora: isolation and identification of some coumarins. Planta Med 59:384–386CrossRefGoogle Scholar
  22. 22.
    Marumoto S, Miyazawa M (2011) Microbial reduction of coumarin, psoralen, and xanthyletin by Glomerella cingulata. Tetrahedron 67:495–500CrossRefGoogle Scholar
  23. 23.
    Monira A, Alexander IG, Greg L, Peter GW (1993) Quinolone and acridone alkaloids from Boronia lanceolata. Phytochemistry 33:1507–1510CrossRefGoogle Scholar
  24. 24.
    Bergenthal D, Mester I, Rozsa Z, Reisch J (1979) 13C-NMR-Spektren einiger acridon-alkaloide. Phytochemistry 18:161–163CrossRefGoogle Scholar
  25. 25.
    Zs Rozsa, Szendrei K, Kovacs Z, Novak I, Minker E, Reisch J (1978) The co-occurrence of rutacridone and noracronycine in the roots of Boenninghausenia albiflora. Phytochemistry 17:169–170CrossRefGoogle Scholar
  26. 26.
    Reisch J, Szendrei K, Minker E, Novak I (1969) Quinoline alkaloids from Ruta graveolens. XXIV N-methylplatydesminium and ribalindine. Pharmazie 24:699–700PubMedGoogle Scholar
  27. 27.
    Jagadeesh SG, David KGL, Srimannarayana G (2000) Antifeedant activity of the constituents of Evodia lunu-ankenda. Indian J Chem 39B:475–476Google Scholar
  28. 28.
    Narasimhan NS, Mali RS (1974) Synthetic application of lithiation reactions VI. Tetrahedron 30:4153–4157CrossRefGoogle Scholar
  29. 29.
    Elaine MC, James AM, Marcelo RS, Luis OR, Simone YS, Norberto PL, Jose RP, Vanderlan SB, Maria CM (2010) Alkaloids from stems of Esenbeckia leiocarpa engl. (Rutaceae) as potential treatment for alzheimer disease. Molecules 15:9205–9213CrossRefGoogle Scholar
  30. 30.
    Taniguchi M, Satomura Y (1972) Structure and physiological activity of carbostyril compounds. Agric Biol Chem 36:2169–2175CrossRefGoogle Scholar
  31. 31.
    Yuan QT, Xiao ZF, Liang H (1996) Quinolone alkaloids from Evodia rutaecarpa. Phytochemistry 43:719–722CrossRefGoogle Scholar
  32. 32.
    Annunziata R, Cenini S, Palmisano G, Tollari S (1996) 4(1H)-quinolinone alkaloids. An efficient synthesis of graveoline by palladium-catalysed reductive N-heterocyclisation. Synth Commun 26:495–501CrossRefGoogle Scholar
  33. 33.
    Khalid ES, Mansour SA, Farouk SE, Samir AR (2000) New quinolone alkaloids from Ruta chalepensis. J Nat Prod 63:995–997CrossRefGoogle Scholar
  34. 34.
    Finn GJ, Creaven BS, Egan DA (2004) A study of the role of cell cycle events mediating the mechanism of action of coumarin derivatives in human malignant melanoma cells. Cancer Lett 214:43–54CrossRefPubMedGoogle Scholar
  35. 35.
    Finn GJ, Creaven BS, Egan DA (2004) Daphnetin-induced differentiation of human renal carcinoma cells and its mediation by p38 mitogen-activated protein kinases. Biochem Pharm 67:1779–1788CrossRefPubMedGoogle Scholar
  36. 36.
    Finn GJ, Creaven BS, Egan DA (2005) Effects of coumarin derivatives on differentiation of melanotic malanoma cells: a functional role for mitogen-activated protein kinases. Eur J Pharm Sci 26:16–25CrossRefPubMedGoogle Scholar
  37. 37.
    Klenkar J, Molnar M (2015) Natural and synthetic coumarins as potential anticancer agents. J Chem Pharm Res 7:1223–1238Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  • Daisuke Nakano
    • 1
  • Kenji Ishitsuka
    • 2
  • Narumi Matsuda
    • 1
  • Ai Kouguchi
    • 1
  • Ryota Tsuchihashi
    • 1
  • Masafumi Okawa
    • 1
  • Hikaru Okabe
    • 1
  • Kazuo Tamura
    • 3
  • Junei Kinjo
    • 1
  1. 1.Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
  2. 2.Division of Hematology and Immunology Center for Chronic Viral Diseases Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
  3. 3.Department of Internal Medicine, Division of Medical Oncology, Hematology and Infectious DiseaseFukuoka UniversityFukuokaJapan

Personalised recommendations