Skip to main content

Advertisement

Log in

Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (V): coumarins and alkaloids from Boenninghausenia japonica and Ruta graveolens

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

During the course of our studies towards the identification of promising chemotherapeutic candidates from plants against two human T-cell lymphotropic virus type I-infected T-cell lines (MT-1 and MT-2), we screened 17 extracts from 9 rutaceous plants against MT-1 and MT-2 cells. The extracts from the aerial parts and roots of Boenninghausenia japonica, as well as the leaves and roots of Ruta graveolens showed potent antiproliferative effects. After activity-guided fractionation, we isolated 44 compounds from two rutaceous plants, including three new compounds (1–3), which were classified into 26 coumarin analogs (13 coumarins, 8 furanocoumarins, 4 dihydrofuranocoumarins and one dihydropyranocoumarin), 15 alkaloid analogs (7 quinolone alkaloids, 4 acridone alkaloids, 3 furanoquinoline alkaloids and one tetrahydroacridone alkaloid) and 3 flavonoid glycosides. Structure–activity relationship studies were also evaluated. The coumarin compounds (2, 3 and 7–9) bearing a 3-dimethylallyl moiety showed potent activity. Similarly, of all the furanocoumarins evaluated in the current study, compound 17 bearing a 3-dimethylallyl group also showed potent activity. A dihydrofuranocoumarin (27) bearing a 3-dimethylallyl moiety showed the most potent activity. Following 27, compound 28 showed potent activity. These results therefore suggested that the presence of a 3-dimethylallyl moiety was important to the antiproliferative activity of these coumarin analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ishitsuka K, Tamura K (2008) Treatment of adult T-cell leukemia/lymphoma: past, present, and future. Eur J Haematol 80:185–196

    Article  CAS  PubMed  Google Scholar 

  2. Nakano D, Ishitsuka K, Hatsuse T, Tsuchihashi R, Okawa M, Okabe H, Tamura K, Kinjo J (2011) Screening of promising chemotherapeutic candidates against human adult T-cell leukemia/lymphoma from plants: active principles structure–activity relationships with withanolides. J Nat Med 65:559–567

    Article  CAS  PubMed  Google Scholar 

  3. Nakano D, Ishitsuka K, Katsuya H, Kunami N, Nogami R, Yoshimura Y, Matsuda M, Kamikawa M, Tsuchihashi R, Okawa M, Ikeda T, Nohara T, Tamura K, Kinjo J (2013) Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (II): apoptosis of antiproliferactive principle (24,25-dihydrowithanolide D) against ATL cell lines and structure–activity relationships with withanolides isolated from solanaceous plants. J Nat Med 67:415–420

    Article  CAS  PubMed  Google Scholar 

  4. Nakano D, Ishitsuka K, Kamikawa M, Matsuda M, Tsuchihashi R, Okawa M, Okabe H, Tamura K, Kinjo J (2013) Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (III). J Nat Med 67:894–903

    Article  CAS  PubMed  Google Scholar 

  5. Nakano D, Ishitsuka K, Ikeda M, Tsuchihashi R, Okawa M, Okabe H, Tamura K, Kinjo J (2015) Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (IV): phenanthroindolizidine alkaloids from Tylophora tanakae leaves. J Nat Med 69:397–401

    Article  CAS  PubMed  Google Scholar 

  6. Harborne JB (1988) The flavonoids. Advances in research. Chapman and Hall, New York

    Book  Google Scholar 

  7. Chaya N, Terauchi K, Yamagata Y, Kinjo J, Okabe H (2004) Antiproliferative constituents in plants 14. Alkaloids from Boenninghausenia japonica Nakai. Biol Pharm Bull 27:1312–1316

    Article  CAS  PubMed  Google Scholar 

  8. Dieter B, Kalman S, Johannes R (1977) 13C-NMR-Spektren einiger C-3 prenylierter Rutaceen-Cumarine. Arch Pharm 310:390–393

    Article  Google Scholar 

  9. Dieter B, Zsuzsa R, Iuliu M, Johannes R (1978) Beitrag zur 13C-NMR-Spektroskopie von Rutaceen-Cumarinen. Arch Pharm 311:1026–1029

    Article  Google Scholar 

  10. Shibata S, Noguchi M (1977) Two new coumarins in Boenninghausenia albiflora. Phytochemistry 16:291–293

    Article  CAS  Google Scholar 

  11. John L, Marawan S (1984) Coumarin sulphates of Seseli libanotis. Phytochemistry 23:863–865

    Article  Google Scholar 

  12. Joshi PC, Mandal S, Das PC, Chatterjee A (1993) Twominor coumarins of Boenninghausenia albiflora. Phytochemistry 32:481–483

    Article  CAS  Google Scholar 

  13. Sudam CB, Durga PD, Rabindra NT (1984) Bhubaneswin a new blcoumarin. Heterocycle 22:333–337

    Article  Google Scholar 

  14. Kinoshita T, Jin BW, Feng CH (1996) The isolation of a prenylcoumarin of chemotaxonomic significance from Murraya paniculata var. omphalocarpa. Phytochemistry 43:125–128

    Article  CAS  Google Scholar 

  15. Kozawa M, Baba K, Minami M, Nitta H, Hata K (1974) Uber die cumarine der Boenninghausenia japonica (sieb.) Nakai. Chem Pharm Bull 22:2746–2749

    Article  CAS  Google Scholar 

  16. Elgamal MHA, Elewa NH, Elkhrisy EAM, Duddeck H (1979) 13C NMR chemical shifts and carbon-proton coupling constants of some furocoumarins and furochromones. Phytochemistry 18:139–143

    Article  CAS  Google Scholar 

  17. Adeleke CA, Johannes R (2000) Minor furocoumarins of Murraya koenigii. Fitoteraoia 71:334–337

    Article  Google Scholar 

  18. Xue MN, Sheng HL, Li XW, Ling L, Li HG, Han DS (2004) Two new coumarin derivatives from the roots of Heracleum rapula. Lett Planta Med 70:578–581

    Article  Google Scholar 

  19. Abyshev AZ, Agaev EM, Balabudkin MA (1993) Rutarin from the roots of Seseli grandivittatum. Chem Nat Compd 29:250–251

    Article  Google Scholar 

  20. Fernando M, Antonio E, Lucia M, Jose G, Giselle M (1996) Alkaloids and coumarins from esenbeckia species. Phytochemistry 41:647–649

    Article  Google Scholar 

  21. Purusotam B, Shigetoshi K, Krishna M, Mangala DM, Tsuneo N (1993) Constituents of Boenninghausenia albiflora: isolation and identification of some coumarins. Planta Med 59:384–386

    Article  Google Scholar 

  22. Marumoto S, Miyazawa M (2011) Microbial reduction of coumarin, psoralen, and xanthyletin by Glomerella cingulata. Tetrahedron 67:495–500

    Article  CAS  Google Scholar 

  23. Monira A, Alexander IG, Greg L, Peter GW (1993) Quinolone and acridone alkaloids from Boronia lanceolata. Phytochemistry 33:1507–1510

    Article  Google Scholar 

  24. Bergenthal D, Mester I, Rozsa Z, Reisch J (1979) 13C-NMR-Spektren einiger acridon-alkaloide. Phytochemistry 18:161–163

    Article  CAS  Google Scholar 

  25. Zs Rozsa, Szendrei K, Kovacs Z, Novak I, Minker E, Reisch J (1978) The co-occurrence of rutacridone and noracronycine in the roots of Boenninghausenia albiflora. Phytochemistry 17:169–170

    Article  Google Scholar 

  26. Reisch J, Szendrei K, Minker E, Novak I (1969) Quinoline alkaloids from Ruta graveolens. XXIV N-methylplatydesminium and ribalindine. Pharmazie 24:699–700

    CAS  PubMed  Google Scholar 

  27. Jagadeesh SG, David KGL, Srimannarayana G (2000) Antifeedant activity of the constituents of Evodia lunu-ankenda. Indian J Chem 39B:475–476

    CAS  Google Scholar 

  28. Narasimhan NS, Mali RS (1974) Synthetic application of lithiation reactions VI. Tetrahedron 30:4153–4157

    Article  CAS  Google Scholar 

  29. Elaine MC, James AM, Marcelo RS, Luis OR, Simone YS, Norberto PL, Jose RP, Vanderlan SB, Maria CM (2010) Alkaloids from stems of Esenbeckia leiocarpa engl. (Rutaceae) as potential treatment for alzheimer disease. Molecules 15:9205–9213

    Article  Google Scholar 

  30. Taniguchi M, Satomura Y (1972) Structure and physiological activity of carbostyril compounds. Agric Biol Chem 36:2169–2175

    Article  CAS  Google Scholar 

  31. Yuan QT, Xiao ZF, Liang H (1996) Quinolone alkaloids from Evodia rutaecarpa. Phytochemistry 43:719–722

    Article  Google Scholar 

  32. Annunziata R, Cenini S, Palmisano G, Tollari S (1996) 4(1H)-quinolinone alkaloids. An efficient synthesis of graveoline by palladium-catalysed reductive N-heterocyclisation. Synth Commun 26:495–501

    Article  CAS  Google Scholar 

  33. Khalid ES, Mansour SA, Farouk SE, Samir AR (2000) New quinolone alkaloids from Ruta chalepensis. J Nat Prod 63:995–997

    Article  Google Scholar 

  34. Finn GJ, Creaven BS, Egan DA (2004) A study of the role of cell cycle events mediating the mechanism of action of coumarin derivatives in human malignant melanoma cells. Cancer Lett 214:43–54

    Article  CAS  PubMed  Google Scholar 

  35. Finn GJ, Creaven BS, Egan DA (2004) Daphnetin-induced differentiation of human renal carcinoma cells and its mediation by p38 mitogen-activated protein kinases. Biochem Pharm 67:1779–1788

    Article  CAS  PubMed  Google Scholar 

  36. Finn GJ, Creaven BS, Egan DA (2005) Effects of coumarin derivatives on differentiation of melanotic malanoma cells: a functional role for mitogen-activated protein kinases. Eur J Pharm Sci 26:16–25

    Article  CAS  PubMed  Google Scholar 

  37. Klenkar J, Molnar M (2015) Natural and synthetic coumarins as potential anticancer agents. J Chem Pharm Res 7:1223–1238

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junei Kinjo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, D., Ishitsuka, K., Matsuda, N. et al. Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (V): coumarins and alkaloids from Boenninghausenia japonica and Ruta graveolens . J Nat Med 71, 170–180 (2017). https://doi.org/10.1007/s11418-016-1046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-016-1046-5

Keywords

Navigation