Journal of Natural Medicines

, Volume 71, Issue 1, pp 158–169 | Cite as

Carbazole alkaloids from Murraya koenigii trigger apoptosis and autophagic flux inhibition in human oral squamous cell carcinoma cells

  • Tanyarath Utaipan
  • Anan Athipornchai
  • Apichart Suksamrarn
  • Canussanun Jirachotikoon
  • Xiaohong Yuan
  • Monthon Lertcanawanichakul
  • Warangkana Chunglok
Original Paper


Carbazole alkaloids, a major constituent of Murraya koenigii (L.) Sprengel (Rutaceae), exhibit biological effects such as anticancer activity via the induction of apoptosis, and they represent candidate chemotherapeutic agents. Oral squamous cell carcinoma (OSCC) is the most prevalent cancer of the oral cavity and a growing and serious health problem worldwide. In this study, we investigated the anticancer properties and mechanisms of action of two carbazole alkaloids derived from M. koenigii leaves, mahanine and isomahanine, in the OSCC cell line CLS-354. At 15 μM, mahanine and isomahanine were cytotoxic to CLS-354 cells, triggering apoptosis via caspase-dependent and -independent mechanisms. Autophagosomes, visualised using monodansylcadaverine (MDC) labelling, were numerous in carbazole alkaloid-treated cells. Mahanine and isomahanine markedly induced the expression of the autophagosome marker microtubule-associated protein 1 light chain 3, type II (LC3B-II). Genetic and chemical inhibition of autophagy via silencing of the Autophagy protein 5 gene and exposure to bafilomycin A1 (BafA1), respectively, did not arrest carbazole alkaloid-induced apoptosis, indicating that it occurs independently of autophagic activation. Surprisingly, both carbazole alkaloids caused increased accumulation of p62/sequestosome1 (p62/SQSTM1), with coordinated expression of LC3B-II and cleaved caspase-3, suggesting inhibition of autophagic flux. Our results suggest that inhibition of autophagic flux is associated with carbazole alkaloid-induced apoptosis. Our findings provide evidence of a novel cytotoxic action of natural carbazole alkaloids and support their use as candidate chemotherapeutic agents for the treatment of OSCC.


Murraya koenigii Carbazole alkaloid Autophagy Apoptosis Oral squamous cell carcinoma 



This work was supported by the programme strategic scholarships fellowships frontier research networks for the Ph.D. sandwich programme doctoral degree from the Office of the Higher Education Commission (OHEC), Thailand (06/2556); Walailak University (WU56113); Walailak University Fund for graduate studentship (27/2556 and WU55603); The Thailand Research Fund (DBG5980003); Centre of Excellence for Innovation in Chemistry, OHEC. We would like to thank Enago ( for editing and reviewing this manuscript for English language.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

11418_2016_1045_MOESM1_ESM.tif (623 kb)
Supplementary material 1 (TIFF 623 kb)
11418_2016_1045_MOESM2_ESM.tif (1.2 mb)
Supplementary material 2 (TIFF 1206 kb)
11418_2016_1045_MOESM3_ESM.tif (1.7 mb)
Supplementary material 3 (TIFF 1729 kb)


  1. 1.
    Ramsewak RS, Nair MG, Strasburg GM, Dewitt DL, Nitiss JL (1999) Biologically active carbazole alkaloids from Murraya koenigii. J Agric Food Chem 47:444–447CrossRefPubMedGoogle Scholar
  2. 2.
    Choudhury RP, Garg AN (2007) Variation in essential, trace and toxic elemental contents in Murraya koenigii—a spice and medicinal herb from different Indian states. Food Chem 104:1454–1463CrossRefGoogle Scholar
  3. 3.
    Gupta P, Nahata A, Dixit VK (2011) An update on Murraya koenigii Spreng: a multifunctional Ayurvedic herb. J Chin Integr Med 9:824–833CrossRefGoogle Scholar
  4. 4.
    Rao LJM, Ramalakshmi K, Borse BB, Raghavan B (2007) Antioxidant and radical-scavenging carbazole alkaloids from the oleoresin of curry leaf (Murraya koenigii Spreng.). Food Chem 100:742–747CrossRefGoogle Scholar
  5. 5.
    Rahman MM, Gray AI (2005) A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry 66:1601–1606CrossRefPubMedGoogle Scholar
  6. 6.
    Mandal S, Nayak A, Kar M, Banerjee SK, Das A, Upadhyay SN, Singh RK, Banerji A, Banerji J (2010) Antidiarrhoeal activity of carbazole alkaloids from Murraya koenigii Spreng (Rutaceae) seeds. Fitoterapia 81:72–74CrossRefPubMedGoogle Scholar
  7. 7.
    Yankuzo H, Ahmed QU, Santosa RI, Akter SFU, Talib NA (2011) Beneficial effect of the leaves of Murraya koenigii (Linn.) Spreng (Rutaceae) on diabetes-induced renal damage in vivo. J Ethnopharmacol 135:88–94CrossRefPubMedGoogle Scholar
  8. 8.
    Sarkar S, Dutta D, Samanta SK, Bhattacharya K, Pal BC, Li J, Datta K, Mandal C, Mandal C (2013) Oxidative inhibition of Hsp90 disrupts the super-chaperone complex and attenuates pancreatic adenocarcinoma in vitro and in vivo. Int J Cancer 132:695–706CrossRefPubMedGoogle Scholar
  9. 9.
    Ito C, Itoigawa M, Nakao K, Murata T, Tsuboi M, Kaneda N, Furukawa H (2006) Induction of apoptosis by carbazole alkaloids isolated from Murraya koenigii. Phytomedicine 13:359–365CrossRefPubMedGoogle Scholar
  10. 10.
    Roy MK, Thalang VN, Trakoontivakorn G, Nakahara K (2004) Mechanism of mahanine-induced apoptosis in human leukemia cells (HL-60). Biochem Pharmacol 67:41–51CrossRefPubMedGoogle Scholar
  11. 11.
    Sinha S, Pal BC, Jagadeesh S, Banerjee PP, Bandyopadhaya A, Bhattacharya S (2006) Mahanine inhibits growth and induces apoptosis in prostate cancer cells through the deactivation of Akt and activation of caspases. Prostate 66:1257–1265CrossRefPubMedGoogle Scholar
  12. 12.
    Das R, Bhattacharya K, Samanta SK, Pal BC, Mandal C (2014) Improved chemosensitivity in cervical cancer to cisplatin: synergistic activity of mahanine through STAT3 inhibition. Cancer Lett 351:81–90CrossRefPubMedGoogle Scholar
  13. 13.
    Bhattacharya K, Samanta SK, Tripathi R, Mallick A, Chandra S, Pal BC, Shaha C, Mandal C (2010) Apoptotic effects of mahanine on human leukemic cells are mediated through crosstalk between Apo-1/Fas signaling and the Bid protein and via mitochondrial pathways. Biochem Pharmacol 79:361–372CrossRefPubMedGoogle Scholar
  14. 14.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide. IARC CancerBase No. 11.
  15. 15.
    Massano J, Regateiro FS, Januário G, Ferreira A (2006) Oral squamous cell carcinoma: review of prognostic and predictive factors. Oral Surg Oral Med Oral Pathol 102:67–76CrossRefGoogle Scholar
  16. 16.
    Jerjes W, Upile T, Petrie A, Riskalla A, Hamdoon Z, Vourvachis M, Karavidas K, Jay A, Sandison A, Thomas GJ, Kalavrezos N, Hopper C (2010) Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1–T2 oral squamous cell carcinoma patients. Head Neck Oncol 2:9CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang B, Zhang S, Yue K, Wang XD (2013) The recurrence and survival of oral squamous cell carcinoma: a report of 275 cases. Chin J Cancer 32:614–618CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen S, Rehman SK, Zhang W, Wen A, Yao L, Zhang J (2010) Autophagy is a therapeutic target in anticancer drug resistance. Biochem Biophys Acta 1806:220–229PubMedGoogle Scholar
  19. 19.
    Millimouno FM, Dong J, Yang L, Li J, Li X (2014) Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 7:1081–1107CrossRefGoogle Scholar
  20. 20.
    Lin CS, Wang YC, Huang JL, Hung CC, Chen JYF (2012) Autophagy and reactive oxygen species modulate cytotoxicity induced by suppression of ATM kinase activity in head and neck cancer cells. Oral Oncol 48:1152–1158CrossRefPubMedGoogle Scholar
  21. 21.
    Xu D, Lao Y, Xu N, Hu H, Fu W, Tan H, Gu Y, Song Z, Cao P, Xu H (2015) Identification and characterization of anticancer compounds targeting apoptosis and autophagy from Chinese native Garcinia species. Planta Med 81:79–89PubMedGoogle Scholar
  22. 22.
    Ren G, Sha T, Guo J, Li W, Lu J, Chen X (2015) Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells. J Nat Med 69:522–530CrossRefPubMedGoogle Scholar
  23. 23.
    Law BY, Chan WK, Xu SW, Wang JR, Bai LP, Liu L, Wong VK (2014) Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells. Sci Rep 4:5510CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Qiu W, Su M, Xie F, Ai J, Ren Y, Zhang J, Guan R, He W, Gong Y, Guo Y (2014) Tetrandrine blocks autophagic flux and induces apoptosis via energetic impairment in cancer cells. Cell Death Dis 5:e1123CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Reisch J, Goj O, Wickramasinghe A, Herath HB, Henkel G (1992) Carbazole alkaloids from seeds of Murraya koenigii. Phytochemistry 31:2877–2879CrossRefGoogle Scholar
  26. 26.
    Tachibana Y, Kikuzaki H, Lajis NH, Nakatani N (2001) Antioxidative activity of carbazoles from Murraya koenigii leaves. J Agric Food Chem 49:5589–5594CrossRefPubMedGoogle Scholar
  27. 27.
    Samanta SK, Dutta D, Roy S, Bhattacharya K, Sarkar S, Dasgupta AK, Pal BC, Mandal C, Mandal C (2013) Mahanine, a DNA minor groove binding agent exerts cellular cytotoxicity with involvement of C-7-OH and -NH functional groups. J Med Chem 56:5709–5721CrossRefPubMedGoogle Scholar
  28. 28.
    Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19:555–566CrossRefPubMedGoogle Scholar
  29. 29.
    Pradelli LA, Bénéteau M, Ricci JE (2010) Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 67:1589–1597CrossRefPubMedGoogle Scholar
  30. 30.
    Munafó DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114:3619–3629PubMedGoogle Scholar
  31. 31.
    Fukui M, Yamabe N, Choi HJ, Polireddy K, Chen Q, Zhu BT (2015) Mechanism of ascorbate-induced cell death in human pancreatic cancer cells: role of bcl-2, beclin 1 and autophagy. Planta Med 81:838–846CrossRefPubMedGoogle Scholar
  32. 32.
    Otomo C, Metlagel Z, Takaesu G, Otomo T (2013) Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol 20:59–66CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang XJ, Chen S, Huang KX, Le WD (2013) Why should autophagic flux be assessed? Acta Pharmacol Sin 34:595–599CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bjørkøy G, Lamark T, Pankiv S, Øvervatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197CrossRefPubMedGoogle Scholar
  35. 35.
    Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, Fang Y, Wang Z, Zhang H, Li X, Wang Z, Cai J, Wang J, Zhang Y, Mao X, Zhao W, Hu S, Chen S, Wang J (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 100:345–356CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    He PX, Che YS, He QJ, Chen Y, Ding J (2014) G226, a novel epipolythiodioxopiperazine derivative, induces autophagy and caspase-dependent apoptosis in human breast cancer cells in vitro. Acta Pharmacol Sin 35:1055–1064CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mader BJ, Pivtoraiko VN, Flippo HM, Klocke BJ, Roth KA, Mangieri LR, Shacka JJ (2012) Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem Neurosci 3:1063–1072CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lim J, Lee Y, Kim HW, Oh MS, Youdim MB, Yue Z, Oh YJ (2012) Nigericin-induced impairment of autophagic flux in neuronal cells is inhibited by overexpression of Bak. J Bio Chem 287:23271–23282CrossRefGoogle Scholar
  40. 40.
    Geng Y, Kohli L, Klocke BJ, Roth KA (2010) Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro Oncol 12:473–481PubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  • Tanyarath Utaipan
    • 1
  • Anan Athipornchai
    • 2
    • 3
  • Apichart Suksamrarn
    • 2
  • Canussanun Jirachotikoon
    • 1
  • Xiaohong Yuan
    • 4
  • Monthon Lertcanawanichakul
    • 1
  • Warangkana Chunglok
    • 1
  1. 1.School of Allied Health Sciences and Public HealthWalailak UniversityNakhon Si ThammaratThailand
  2. 2.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceRamkhamhaeng UniversityBangkokThailand
  3. 3.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceBurapha UniversityBangsaenThailand
  4. 4.School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations