Advertisement

Journal of Natural Medicines

, Volume 71, Issue 1, pp 286–291 | Cite as

Cannabidiolic acid-mediated selective down-regulation of c-fos in highly aggressive breast cancer MDA-MB-231 cells: possible involvement of its down-regulation in the abrogation of aggressiveness

  • Shuso Takeda
  • Taichi Himeno
  • Kazuhiro Kakizoe
  • Hiroyuki Okazaki
  • Tomoko Okada
  • Kazuhito Watanabe
  • Hironori Aramaki
Note

Abstract

The physiological activities of cannabidiolic acid (CBDA), a component of fiber-type cannabis plants, have been demonstrated and include its function as a protector against external invasion by inducing cannabinoid-mediated necrosis (Shoyama et al., Plant Signal Behav 3:1111–1112, 2008). The biological activities of CBDA have been attracting increasing attention. We previously identified CBDA as an inhibitor of the migration of MDA-MB-231 cells, a widely used human breast cancer cell line in cancer biology, due to its highly aggressive nature. The chemical inhibition and down-regulation of cyclooxygenase-2 (COX-2), the expression of which has been detected in ~40 % of human invasive breast cancers, are suggested to be involved in the CBDA-mediated abrogation of cell migration. However, the molecular mechanism(s) responsible for the CBDA-induced down-regulation of COX-2 in MDA-MB-231 cells have not yet been elucidated. In the present study, we describe a possible mechanism by which CBDA abrogates the expression of COX-2 via the selective down-regulation of c-fos, one component of the activator protein-1 (AP-1) dimer complex, a transcription factor for the positive regulation of the COX-2 gene.

Keywords

Cannabidiolic acid Cyclooxygenase-2 c-fos MDA-MB-231 cells Fiber-type cannabis plant 

Notes

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (C) (25460182 to S.T.) and in part by a Grant-in-Aid for Young Scientists (Start-up) (15K19167 to H.O.) from the Japan Society for the Promotion of Science (JSPS) KAKENHI.

References

  1. 1.
    Yamauchi T, Shoyama Y, Aramaki H, Azuma T, Nishioka I (1967) Tetrahydrocannabinolic acid, a genuine substance of tetrahydrocannabinol. Chem Pharm Bull (Tokyo) 15:1075–1076CrossRefGoogle Scholar
  2. 2.
    Turner CE, Elsohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169–234CrossRefPubMedGoogle Scholar
  3. 3.
    Taura F, Sirikantaramas S, Shoyama Y, Shoyama Y, Morimoto S (2007) Phytocannabinoids in Cannabis sativa: recent studies on biosynthetic enzymes. Chem Biodivers 4:1649–1663CrossRefPubMedGoogle Scholar
  4. 4.
    Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM (2008) Antibacterial cannabinoids from Cannabis sativa: a structure–activity study. J Nat Prod 71:1427–1430CrossRefPubMedGoogle Scholar
  5. 5.
    Takeda S, Misawa K, Yamamoto I, Watanabe K (2008) Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis. Drug Metab Dispos 36:1917–1921CrossRefPubMedGoogle Scholar
  6. 6.
    Takeda S (2013) Medicinal chemistry and pharmacology focused on cannabidiol, a major component of the fiber-type cannabis. Yakugaku Zasshi 133:1093–1101CrossRefPubMedGoogle Scholar
  7. 7.
    Takeda S, Okazaki H, Ikeda E, Abe S, Yoshioka Y, Watanabe K, Aramaki H (2014) Down-regulation of cyclooxygenase-2 (COX-2) by cannabidiolic acid in human breast cancer cells. J Toxicol Sci 39:711–716CrossRefPubMedGoogle Scholar
  8. 8.
    Bolognini D, Rock EM, Cluny NL, Cascio MG, Limebeer CL, Duncan M, Stott CG, Javid FA, Parker LA, Pertwee RG (2013) Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation. Br J Pharmacol 168:1456–1470CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rock EM, Parker LA (2013) Effect of low doses of cannabidiolic acid and ondansetron on LiCl-induced conditioned gaping (a model of nausea-induced behaviour) in rats. Br J Pharmacol 169:685–692CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Takeda S, Okajima S, Miyoshi H, Yoshida K, Okamoto Y, Okada T, Amamoto T, Watanabe K, Omiecinski CJ, Aramaki H (2012) Cannabidiolic acid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration. Toxicol Lett 214:314–319CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Singh B, Berry JA, Shoher A, Ayers GD, Wei C, Lucci A (2007) COX-2 involvement in breast cancer metastasis to bone. Oncogene 26:3789–3796CrossRefPubMedGoogle Scholar
  12. 12.
    Holmes MD, Chen WY, Schnitt SJ, Collins L, Colditz GA, Hankinson SE, Tamimi RM (2011) COX-2 expression predicts worse breast cancer prognosis and does not modify the association with aspirin. Breast Cancer Res Treat 130:657–662CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yoshinaka R, Shibata MA, Morimoto J, Tanigawa N, Otsuki Y (2006) COX-2 inhibitor celecoxib suppresses tumor growth and lung metastasis of a murine mammary cancer. Anticancer Res 26:4245–4254PubMedGoogle Scholar
  14. 14.
    Karin M, Liu ZG, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246CrossRefPubMedGoogle Scholar
  15. 15.
    Dong Z, Huang C, Brown RE, Ma WY (1997) Inhibition of activator protein 1 activity and neoplastic transformation by aspirin. J Biol Chem 272:9962–9970CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schmedtje JF Jr, Ji YS, Liu WL, DuBois RN, Runge MS (1997) Hypoxia induces cyclooxygenase-2 via the NF-κB p65 transcription factor in human vascular endothelial cells. J Biol Chem 272:601–608CrossRefPubMedGoogle Scholar
  17. 17.
    Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, Ganju RK (2009) Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther 8:3117–3129CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Takeda S, Yoshida K, Nishimura H, Harada M, Okajima S, Miyoshi H, Okamoto Y, Amamoto T, Watanabe K, Omiecinski CJ, Aramaki H (2013) Δ9-Tetrahydrocannabinol disrupts estrogen-signaling through up-regulation of estrogen receptor β (ERβ). Chem Res Toxicol 26:1073–1079CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Faigenbaum R, Haklai R, Ben-Baruch G, Kloog Y (2013) Growth of poorly differentiated endometrial carcinoma is inhibited by combined action of medroxyprogesterone acetate and the Ras inhibitor Salirasib. Oncotarget 4:316–328CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Takeda S, Ikeda E, Su S, Harada M, Okazaki H, Yoshioka Y, Nishimura H, Ishii H, Kakizoe K, Taniguchi A, Tokuyasu M, Himeno T, Watanabe K, Omiecinski CJ, Aramaki H (2014) ∆9-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells. Toxicology 326:18–24CrossRefPubMedGoogle Scholar
  21. 21.
    Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30:515–527 [Erratum in Trends Pharmacol Sci (2009) 30:609]CrossRefPubMedGoogle Scholar
  22. 22.
    Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265:956–959CrossRefPubMedGoogle Scholar
  23. 23.
    Andradas C, Caffarel MM, Pérez-Gómez E, Salazar M, Lorente M, Velasco G, Guzmán M, Sánchez C (2011) The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. Oncogene 30:245–252CrossRefPubMedGoogle Scholar
  24. 24.
    Ford LA, Roelofs AJ, Anavi-Goffer S, Mowat L, Simpson DG, Irving AJ, Rogers MJ, Rajnicek AM, Ross RA (2010) A role for L-α-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. Br J Pharmacol 160:762–771CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shoyama Y, Sugawa C, Tanaka H, Morimoto S (2008) Cannabinoids act as necrosis-inducing factors in Cannabis sativa. Plant Signal Behav 3:1111–1112CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  • Shuso Takeda
    • 1
    • 2
  • Taichi Himeno
    • 2
  • Kazuhiro Kakizoe
    • 2
  • Hiroyuki Okazaki
    • 2
  • Tomoko Okada
    • 3
  • Kazuhito Watanabe
    • 4
  • Hironori Aramaki
    • 2
    • 5
  1. 1.Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical SciencesHiroshima International University (HIU)KureJapan
  2. 2.Department of Molecular BiologyDaiichi University of PharmacyFukuokaJapan
  3. 3.Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  4. 4.Pharmaceutical Education CenterDaiichi University of PharmacyFukuokaJapan
  5. 5.Drug Innovation Research CenterDaiichi University of PharmacyFukuokaJapan

Personalised recommendations