## Abstract

Contemporaneous research in macroeconomics is experiencing a methodological transition. The well-established representative agent optimal control model, which has served for many decades as the fundamental point of reference to approach most of the aggregate phenomena in economics, is being gradually adapted or replaced. In the new settings, agent heterogeneity prevails: while some agents eventually continue to take optimal intertemporal decisions, others do not possess the ability or the willingness to do so, and therefore resort to simple heuristics in their decision-making processes. In this study, the basic Ramsey growth model of intertemporal choice is reinterpreted in the light of the heterogeneity assumption. Four different frameworks are proposed, and the respective dynamics investigated; these frameworks contemplate: (i) the coexistence of optimal planners and hand-to-mouth consumers; (ii) the coexistence of optimal planners and rule-of-thumb savers; (iii) intertemporal discount rate heterogeneity with endogenous determination of hand-to-mouth behavior; (iv) absence of optimal planning and full heuristic behavior. The derived results point to a richness of outcomes that can only be unveiled once the simple dynamic growth setup is expanded to include different consumption-savings profiles.

This is a preview of subscription content, log in to check access.

## Notes

- 1.
The notion of representative agent is pervasive in macroeconomic thought. It is the basis of the Ramsey (1928), Cass (1965), Koopmans (1965) optimal growth model; it is also the foundation underlying real business cycle theory (Kydland and Prescott 1982), as well as new Keynesian macro-models (Goodfriend and King 1997; Clarida et al. 1999; Woodford 2003).

- 2.
Acharya and Dogra (2020) introduce yet another acronym: PRANK. The PRANK (pseudo-representative agent new Keynesian) model is a HANK model where one can dissociate and evaluate the separate impact of heterogeneity in the marginal propensity to consume of households and of the cyclicality of income risk.

- 3.
Examples of influential contributions for economic growth theory published in recent years, which make pervasive use of the benchmark intertemporal utility maximization framework, include Lucas and Moll (2014), Buera and Lucas (2018), Acemoglu and Cao (2015), Aghion et al. (2015), Akcigit et al. (2016), Benhabib et al. (2014), Grossman and Helpman (2015), and Stokey (2015).

## References

Acemoglu D, Cao D (2015) Innovation by entrants and incumbents. J Econ Theory 157:255–294

Acharya S, Dogra K (2020) Understanding HANK: insights from a PRANK. Econometrica 88:1113–1158

Aghion P, Akcigit U, Howitt P (2015) Lessons from schumpeterian growth theory. Am Econ Rev 105:94–99

Akcigit U, Celik MA, Greenwood J (2016) Buy, keep, or sell: economic growth and the market for ideas. Econometrica 84:943–984

Allen TW, Carroll CD (2001) Individual learning about consumption. Macroecon Dyn 5:255–271

Amato JD, Laubach T (2003) Rule-of-thumb behaviour and monetary policy. Eur Econ Rev 47:791–831

Ballot G, Mandel A, Vignes A (2015) Agent-based modelling and economic theory: where do we stand? J Econ Interac Coord 10:199–220

Benartzi S, Thaler R (2007) Heuristics and biases in retirement savings behavior. J Econ Perspect 21:81–104

Benhabib J, Perla J, Tonetti C (2014) Catch-up and fall-back through innovation and imitation. J Econ Growth 19:1–35

Bilbiie FO (2017) The new keynesian cross: understanding monetary policy with hand-to-mouth households. CEPR Discussion Papers 11989, C.E.P.R. Discussion Papers

Bozio A, Laroque G, O’Dea C (2017) Discount rate heterogeneity among older households: a puzzle? J Popul Econ 30:647–680

Browning M, Lusardi A (1996) Household saving: micro theories and micro facts. J Econ Lit 34:1797–1855

Buera FJ, Lucas RE (2018) Idea flows and economic growth. Ann Rev Econ 10:315–345

Campbell JY, Mankiw NG (1990) Permanent income, current income, and consumption. J Bus Econ Stat 8:265–279

Cass D (1965) Optimum growth in an aggregative model of capital accumulation. Rev Econ Stud 32:233–240

Cho D, Kim KH (2013) Deep habits, rule-of-thumb consumers, and fiscal policy. Korean Econ Rev 29:305–327

Clarida R, Gali G, Gertler M (1999) The science of monetary policy: a new Keynesian perspective. J Econ Lit 37:1661–1707

Colciago A (2011) Rule-of-thumb consumers meet sticky wages. J Money Credit Bank 43:325–353

Dawid H, Harting P, Hoog S, Neugart M (2019) Macroeconomics with heterogeneous agent models: fostering transparency, reproducibility and replication. J Evol Econ 29:467–538

De Grauwe P (2010) Top-down versus bottom-up macroeconomics. CESifo Econ Stud 56:465–497

Deaton A (1992) Household Saving in LDCs: Credit Markets, Insurance and Welfare. Scandinavian Journal of Economics 94:253–273

DellaVigna S (2009) Psychology and economics: evidence from the field. J Econ Lit 47:315–372

Di Bartolomeo G, Rossi L, Tancioni M (2011) Monetary policy, rule-of-thumb consumers and external habits: a G7 comparison. Appl Econ 43:2721–2738

Doepke M, Tertilt M (2016) Families in macroeconomics. NBER working paper n \({{}^o}\) 22068

Dosi G, Roventini A (2019) More is different... and complex! the case for agent-based macroeconomics. J Evol Econ 29:1–37

Dosi G, Napoletano M, Roventini A, Stiglitz JE, Treibich T (2017) Rational heuristics? Expectations and behaviors in evolving economies with heterogeneous interacting agents. LEM papers series 2017/31, Sant’Anna School of Advanced Studies, Pisa, Italy

Gabaix X (2014) A sparsity-based model of bounded rationality. Quart J Econ 129:1661–1710

Gali J, López-Salido JD, Vallés J (2004) Rule-of-thumb consumers and the design of interest rate rules. J Money Credit Bank 36:739–763

Gali J, López-Salido JD, Vallés J (2007) Understanding the effects of government spending on consumption. J Eur Econ Assoc 5:227–270

Gerhard P, Gladstone JJ, Hoffmann AOI (2018) Psychological characteristics and household savings behavior: the importance of accounting for latent heterogeneity. J Econ Behav Organ 148:66–82

Gigerenzer G, Brighton H (2009) Homo heuristicus: why biased minds make better inferences. Top Cogn Sci 1:107–143

Gigerenzer G, Gaissmaier W (2011) Heuristic decision making. Annu Rev Psychol 62:451–482

Goodfriend M, King RG (1997) The new neoclassical synthesis and the role of monetary policy. In: Bernanke BS, Rotemberg JJ (eds) NBER macroeconomics annual, vol 12. MIT Press, Cambridge, pp 231–296

Grossman GM, Helpman E (2015) Globalization and growth. Am Econ Rev 105:100–104

Gualdi S, Tarzia M, Zamponi F, Bouchaud JP (2017) Monetary policy and dark corners in a stylized agent-based model. J Econ Interact Coord 12:507–537

Guerini M, Napoletano M, Roventini A (2018) No man is an island: the impact of heterogeneity and local interactions on macroeconomic dynamics. Econ Model 68:82–95

Gustman AL, Steinmeier TL (2005) The social security early entitlement age in a structural model of retirement and wealth. J Public Econ 89:441–463

Haldane AG, Turrell AE (2018) An interdisciplinary model for macroeconomics. Oxford Rev Econ Policy 34:219–251

Haldane AG, Turrell AE (2019) Drawing on different disciplines: macroeconomic agent-based models. J Evol Econ 29:39–66

Havranek T, Sokolova A (2020) Do consumers really follow a rule of thumb? Three thousand estimates from 144 studies say probably not. Rev Econ Dyn 35:97–122

Kaplan G, Violante GL, Weidner J (2014) The wealthy hand-to-mouth. Brookings Papers on Economic Activity, n \({{}^o}\) 1, pp 77–138

Kaplan G, Moll B, Violante GL (2018) Monetary policy according to HANK. Am Econ Rev 108:697–743

Kiley MT (2010) Habit persistence, nonseparability between consumption and leisure, or rule-of-thumb consumers: which accounts for the predictability of consumption growth? Rev Econ Stat 92:679–683

Koopmans TC (1965) On the concept of optimal economic growth. In: The econometric approach to development planning. Amsterdam: North Holland

Krusell P, Smith AA Jr (1996) Rules of thumb in macroeconomic equilibrium. A quantitative analysis. J Econ Dyn Control 20:527–558

Kydland FE, Prescott EC (1982) Time to build and aggregate fluctuations. Econometrica 50:1345–1370

Lettau M, Uhlig H (1999) Rules of thumb versus dynamic programming. Am Econ Rev 89:148–174

Love DA (2013) Optimal rules of thumb for consumption and portfolio choice. Econ J 123:932–961

Lucas RE, Moll B (2014) Knowledge growth and the allocation of time. J Polit Econ 122:1–51

Lusardi A (1996) Permanent income, current income, and consumption: evidence from two panel data sets. J Bus Econ Stat 14:81–90

Lusardi A (2002) Explaining why so many households do not save. Darthmouth College working paper

Natvik GJ (2012) Government spending shocks and rule-of-thumb consumers with steady-state inequality. Scand J Econ 114:1414–1436

Ramsey F (1928) A mathematical theory of saving. Econ J 38:543–559

Reis R (2006) Inattentive consumers. J Monet Econ 53:1761–1800

Rossi R (2014) Designing monetary and fiscal policy rules in a new keynesian model with rule-of-thumb consumers. Macroecon Dyna 18:395–417

Samwick AA (1998) Discount rate heterogeneity and social security reform. J Dev Econ 57:117–146

Stokey NL (2015) Catching up and falling behind. J Econ Growth 20:1–36

Weber CE (2002) Intertemporal non-separability and rule of thumb consumption. J Monet Econ 49:293–308

Winter JK, Schlafmann K, Rodepeter R (2012) Rules of thumb in life-cycle saving decisions. Econ J 122:479–501

Woodford M (2003) Interest and prices: foundations of a theory of monetary policy. Princeton University Press, Princeton, NJ

## Acknowledgements

Financial support from CEFAGE research center, under FCT (Portuguese Foundation for Science and Technology) strategic program UID/ECO/04007/2019, and from MacroViews project (Lisbon Polytechnic Institute), is gratefully acknowledged. I also express my gratitude to two anonymous referees for their valuable input and their detailed and insightful comments and suggestions, which helped in improving the paper’s contents. The usual disclaimer applies.

## Author information

### Affiliations

### Corresponding author

## Additional information

### Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Appendix: Proofs of Propositions

### Appendix: Proofs of Propositions

### Proof of Proposition 1

The steady-state consumption of an optimal planner is displayed in Eq. (10); the consumption of a hand-to-mouth decision-maker is \(\left( c^{H}\right) ^{*}=(1-\alpha )f[(1-\lambda )\left( k^{O}\right) ^{*}]\) . Condition \(\left( c^{O}\right) ^{*}>\left( c^{H}\right) ^{*}\) is equivalent to \(\left( \frac{1}{\alpha }\rho +\frac{1-\alpha }{\alpha }\delta \right) \left( k^{O}\right) ^{*}>(1-\alpha )f[(1-\lambda )\left( k^{O}\right) ^{*}]\). Replacing, in this inequality, ratio \(\alpha \frac{ f[(1-\lambda )\left( k^{O}\right) ^{*}]}{\left( k^{O}\right) ^{*}}\) by the equivalent expression in Eq. (9), it is straightforward to simplify the inequality to \(\rho +(1-\alpha )\lambda \delta >0\). This is a true condition, implying that, independently of the value of parameter \(\lambda \), consumption of a planner is always a higher value, in the steady-state, than the consumption of a hand-to-mouth agent.

### Proof of Proposition 2

Solve \(\left( c^{O}\right) ^{*}>\left( c^{H}\right) ^{*},\) with the value of \(\left( c^{O}\right) ^{*}\) given by (14) and the value of \(\left( c^{H}\right) ^{*}\) equal to the marginal productivity of labor, i.e., \(\frac{1}{1+\tau }\left( \frac{1}{\alpha }\rho +\frac{1-\alpha }{\alpha }\delta \right) \left( k^{O}\right) ^{*}>(1-\alpha )f[(1-\lambda )\left( k^{O}\right) ^{*}]\). Resorting to Eq. (9) to simplify the inequality and rearranging the corresponding expression, one obtains condition (15).

### Proof of Proposition 4

Taking into consideration expressions (29) and (31), variable \(c^{S}(t)\) is, in the steady-state, equivalent to:

The steady-state consumption of an optimal planner is calculated from \( \overset{\text {{.}}}{k^{O}}(t)=0\), given the already computed steady-state relations,

If \(s=\frac{\alpha \delta }{\rho +\delta }\) and, hence, \(\Psi =0\), it is straightforward to arrive to outcome \(\left( c^{S}\right) ^{*}=\left( c^{O}\right) ^{*}=\left( \frac{1}{\alpha }\rho +\frac{1-\alpha }{\alpha } \delta \right) k^{*}\). In the scenario where \(s<\frac{\alpha \delta }{ \rho +\delta }\), one knows that \(-\left( 1-{\widehat{\lambda }}\right)<\Psi <0 \). Replacing any value of \(\Psi \) within this interval into expression ( 50), one obtains a value of \(\left( c^{O}\right) ^{*}\) larger than \(\frac{1-s}{s}\delta k^{*}\), i.e., larger than \(\left( c^{S}\right) ^{*}\). The opposite occurs for \(s>\frac{\alpha \delta }{\rho +\delta }\); in this case \(0<\Psi <{\widehat{\lambda }}\), and, for any \(\Psi \) such that \( \left( c^{O}\right) ^{*}>0\), \(\left( c^{O}\right) ^{*}\) is maintained in a value that is lower than \(\frac{1-s}{s}\delta k^{*}\).

### Proof of Proposition 5

Hand-to-mouth consumers will consume their wage income, i.e.,

while the steady-state consumption level of an optimizer is calculated by applying condition \(\overset{\text {{.}}}{k}(t,i)=0\) to constraint (36),

Whether \(c^{*}(i)\) increases or falls with a change in \(\rho (i)\) depends on the sign of the following partial derivative of (52): \(\frac{\partial c^{*}(i)}{\partial \rho (i)}=\frac{1}{1-\alpha }\left[ \frac{\delta }{\alpha }\frac{k^{*}}{f(k^{*})}-1\right] k^{*}\). If \(\frac{f(k^{*})}{k^{*}}>\frac{\delta }{\alpha }\), then \(\frac{ \partial c^{*}(i)}{\partial \rho (i)}<0\) and \(c^{*}(i)\) decreases as the discount rate \(\rho (i)\) increases; the opposite occurs for \(\frac{ f(k^{*})}{k^{*}}<\frac{\delta }{\alpha }\). In the boundary case \( \frac{f(k^{*})}{k^{*}}=\frac{\delta }{\alpha }\), \(c^{*}(i)=\frac{ 1-\alpha }{\alpha }\delta k^{*}\) for all feasible values of \(\rho (i)\). Note, as well, that if \(\frac{f(k^{*})}{k^{*}}=\frac{\delta }{\alpha }\), then, according to (51), also \(\left( c^{H}\right) ^{*}= \frac{1-\alpha }{\alpha }\delta k^{*}\).

Regardless of the upward or downward movement of \(c^{*}(i)\) as the discount rate increases, the threshold point that marks the transition from planning to hand-to-mouth behavior, which takes place at the value of \(\rho (i)\) that satisfies condition \(\frac{f(k^{*})}{k^{*}}=\frac{\rho (i)+\delta }{(2-\alpha )\alpha }\), is always such that \(c^{*}(i)=\left( c^{H}\right) ^{*}\). Hence, three outcomes are possible, depending on the value of ratio \(\frac{f(k^{*})}{k^{*}}\). If \(\frac{f(k^{*})}{ k^{*}}=\frac{\delta }{\alpha }\), then \(c^{*}(i)=\left( c^{H}\right) ^{*}=\frac{1-\alpha }{\alpha }\delta k^{*},\forall \)\(\rho (i)\ge 0\) ; if \(\frac{f(k^{*})}{k^{*}}>\frac{\delta }{\alpha }\), then \(c^{*}(i)\) starts at a value such that \(c^{*}(i)>\left( c^{H}\right) ^{*}\) for \(\rho (i)=0\) and it declines until it reaches \(c^{*}(i)=\left( c^{H}\right) ^{*}\) at point \(\frac{f(k^{*})}{k^{*}}=\frac{\rho (i)+\delta }{(2-\alpha )\alpha }\); if \(\frac{f(k^{*})}{k^{*}}<\frac{ \delta }{\alpha }\), then \(c^{*}(i)\) starts at a value such that \(c^{*}(i)<\left( c^{H}\right) ^{*}\) for \(\rho (i)=0\) and it increases until it reaches \(c^{*}(i)=\left( c^{H}\right) ^{*}\) at point \(\frac{ f(k^{*})}{k^{*}}=\frac{\rho (i)+\delta }{(2-\alpha )\alpha }\).

### Proof of Proposition 6

The first two conditions of dynamic equation (46) imply that *k*(*t*, *i*) converges to zero over time: agents will not accumulate capital in the long-term and their consumption level is \(\left( c^{H}\right) ^{*}=w^{*}=(1-\alpha )f(k^{*})\), i.e., these agents are hand-to-mouth consumers. The remaining agents are rule-of-thumb savers for which we derive the following steady-state outcome,

From consumption function (44), it is straightforward to compute the equality in the proposition, once one takes into account relation (53).

## Rights and permissions

## About this article

### Cite this article

Gomes, O. Hand-to-mouth consumers, rule-of-thumb savers, and optimal control.
*J Econ Interact Coord* (2020). https://doi.org/10.1007/s11403-020-00292-4

Received:

Accepted:

Published:

### Keywords

- Heterogeneous agents
- Consumption heuristics
- Intertemporal preferences
- Hand-to-mouth consumers
- Rule-of-thumb savers

### JEL Classification

- O41
- E21
- D15
- C61