Gibbs Measure for the Higher Order Modified Camassa-Holm Equation


This paper is devoted to constructing a globally rough solution for the higher order modified Camassa-Holm equation with randomization on initial data and periodic boundary condition. Motivated by the works of Thomann and Tzvetkov (Nonlinearity, 23 (2010), 2771–2791), Tzvetkov (Probab. Theory Relat. Fields, 146 (2010), 4679–4714), Burq, Thomann and Tzvetkov (Ann. Fac. Sci. Toulouse Math., 27 (2018), 527–597), the authors first construct the Borel measure of Gibbs type in the Sobolev spaces with lower regularity, and then establish the existence of global solution to the equation with the helps of Prokhorov compactness theorem, Skorokhod convergence theorem and Gibbs measure.

This is a preview of subscription content, access via your institution.


  1. [1]

    Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations, Geom. Funct. Anal., 3, 1993, 107–156.

    MathSciNet  Article  Google Scholar 

  2. [2]

    Bourgain, J., Periodic Schrödinger equation and invariant measures, Comm. Math. Phys., 166, 1994, 1–26.

    MathSciNet  Article  Google Scholar 

  3. [3]

    Bourgain, J. and Bulut, A., Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball, J. Funct. Anal., 266, 2014, 2319–2340.

    MathSciNet  Article  Google Scholar 

  4. [4]

    Bressan, A. and Constantin, A., Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183, 2007, 215–239.

    MathSciNet  Article  Google Scholar 

  5. [5]

    Burq, N., Thomann, L. and Tzvetkov, N., Remarks on the Gibbs measures for nonlinear dispersive equations, Ann. Fac. Sci. Toulouse Math., 27, 2018, 527–597.

    MathSciNet  Article  Google Scholar 

  6. [6]

    Burq, N. and Tzvetkov, N., Random data Cauchy theory for supercritical wave equations, I, Local theory, Invent. Math., 173, 2008, 449–475.

    MathSciNet  Article  Google Scholar 

  7. [7]

    Burq, N. and Tzvetkov, N., Random data Cauchy theory for supercritical wave equations, II, A global existence result, Invent. Math., 173, 2008, 477–496.

    MathSciNet  Article  Google Scholar 

  8. [8]

    Camassa, R. and Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1993, 1661–1664.

    MathSciNet  Article  Google Scholar 

  9. [9]

    Chen, Y. and Gao, H. J., The Cauchy problem for the Hartree equations under random influences, J. Differential Equations, 259, 2015, 5192–5219.

    MathSciNet  Article  Google Scholar 

  10. [10]

    Colliander, J. and Oh, T., Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L2(T), Duke Math. J., 161, 2012, 367–414.

    MathSciNet  Article  Google Scholar 

  11. [11]

    Constantin, A. and Mckean, H. P., A shallow water equation on the circle, Comm. Pure Appl. Math., 52, 2000, 949–982.

    MathSciNet  Article  Google Scholar 

  12. [12]

    Danchin, R., A note on well-posedness of the Camassa-Holm equation, J. Differential Equations, 192, 2003, 429–444.

    MathSciNet  Article  Google Scholar 

  13. [13]

    Deng, C. and Cui, S. B., Random-data Cauchy problem for the Navier-Stokes equations on T3, J. Differential Equations, 251, 2011, 902–917.

    MathSciNet  Article  Google Scholar 

  14. [14]

    Federico, C. and Suzzoni de, A. S., Invariant measure for the Schrödinger equation on the real line, J. Funct. Anal., 269, 2015, 271–324.

    MathSciNet  Article  Google Scholar 

  15. [15]

    Gorsky, J., On the Cauchy problem for a KdV-type equation on the circle, Ph. D. Thesis, University of Notre Dame, 2004, 128 pages.

  16. [16]

    Himonas, A. A. and Misiolek, C., Well-posedness of the Cauchy problem for a shallow water equation on the circle, J. Differential Equations, 161, 2000, 479–495.

    MathSciNet  Article  Google Scholar 

  17. [17]

    Lebowitz, J., Rose, H. and Speer, E., Statistical mechanics of the nonlinear Schrödinger equation, J. Stat. Phys., 50, 1988, 657–687.

    Article  Google Scholar 

  18. [18]

    Li, Y., Yan, W. and Yang, X., Well-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity, J. Evol. Equ., 10, 2010, 465–486.

    MathSciNet  Article  Google Scholar 

  19. [19]

    Oh, T., Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono system, SIAM J. Math. Anal., 41, 2009, 2207–2225.

    MathSciNet  Article  Google Scholar 

  20. [20]

    Oh, T., Invariance of the white noise for KdV, Comm. Math. Phys., 292, 2009, 217–236.

    MathSciNet  Article  Google Scholar 

  21. [21]

    Oh, T. and Quastel, J., On invariant Gibbs measures conditioned on mass and momentum, J. Math. Soc. Japan, 65, 2013, 13–35.

    MathSciNet  Article  Google Scholar 

  22. [22]

    Thomann, L. and Tzvetkov, N., Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity, 23, 2010, 2771–2791.

    MathSciNet  Article  Google Scholar 

  23. [23]

    Tzvetkov, N., Construction of a Gibbs measures associated to the periodic Benjamin-Ono equation, Probab. Theory Relat. Fileds, 146, 2010, 481–514.

    MathSciNet  Article  Google Scholar 

  24. [24]

    Tzvetkov, N. and Visciglia, N., Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation, Ann. Sci. Éc. Norm. Supér., 46, 2013, 249–299.

    MathSciNet  Article  Google Scholar 

  25. [25]

    Wang, H. and Cui, S. B., Global well-posedness of the Cauchy problem of the fifth order shallow water equation, J. Differential Equations, 230, 2006, 600–613.

    MathSciNet  Article  Google Scholar 

  26. [26]

    Xin, Z. and Zhang, P., On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53, 2000, 1411–1433.

    MathSciNet  Article  Google Scholar 

  27. [27]

    Yan, W., Li, Y. S., Zhai, X. P. and Zhang, Y. M., The Cauchy problem for the shallow water type equations in low regularity spaces on the circle, Adv. Diff. Eqns., 22, 2017, 363–402.

    MathSciNet  MATH  Google Scholar 

  28. [28]

    Zhang, T. and Fang, D. Y., Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech., 14, 2012, 311–324.

    MathSciNet  Article  Google Scholar 

Download references


Part of this work was completed while Lin Lin and Wei Yan were visiting Center for Mathematical Sciences (, Huazhong University of Science and Technology, Wuhan, China, as the members of a Research Team on stochastic partial differential equations, whose support is greatly appreciated.

Author information



Corresponding author

Correspondence to Wei Yan.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11901302, 11401180), the Natural Science Foundation from Jiangsu province BK20171029 and the Academic Discipline Project of Shanghai Dianji University (No. 16JCXK02).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Yan, W. & Duan, J. Gibbs Measure for the Higher Order Modified Camassa-Holm Equation. Chin. Ann. Math. Ser. B 42, 105–120 (2021).

Download citation


  • Higher-order modified Camassa-Holm equation
  • The randomization of the initial value
  • Gibbs measure
  • Global solution

2000 MR Subject Classification

  • 35G25
  • 37K05