Rotational Forms of Large Eddy Simulation Turbulence Models: Modeling and Mathematical Theory


In this paper the authors present a derivation of a back-scatter rotational Large Eddy Simulation model, which is the extension of the Baldwin & Lomax model to non-equilibrium problems. The model is particularly designed to mathematically describe a fluid filling a domain with solid walls and consequently the differential operators appearing in the smoothing terms are degenerate at the boundary. After the derivation of the model, the authors prove some of the mathematical properties coming from the weighted energy estimates, which allow to prove existence and uniqueness of a class of regular weak solutions.

This is a preview of subscription content, access via your institution.


  1. [1]

    Amrouche, C., Berselli, L. C., Lewandowski, R. and Nguyen, D. D., Turbulent flows as generalized Kelvin-Voigt materials: Modeling and analysis, Nonlinear Anal., 196, 2020, 111790.

    MathSciNet  Article  Google Scholar 

  2. [2]

    Baldwin, B. and Lomax, H., Thin-layer approximation and algebraic model for separated turbulent flows, AIAA paper 78–257, January 1978. 16th AIAA aerospace sciences meeting, Huntsville, AL. U.S.A.

  3. [3]

    Berselli, L. C. and Breit, D., On the existence of weak solutions for the steady Baldwin-Lomax model and generalizations, J. Math. Anal. Appl., 2020, 124633.

  4. [4]

    Berselli, L. C., Iliescu, T. and Layton, W. J., Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation, Springer-Verlag, Berlin, 2006.

    Google Scholar 

  5. [5]

    Bourguignon, J. P. and Brezis, H., Remarks on the Euler equation, J. Functional Analysis, 15, 1974, 341–363.

    MathSciNet  Article  Google Scholar 

  6. [6]

    Cao, Y., Lunasin, E. M. and Titi, E. S., Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4(4), 2006, 823–848.

    MathSciNet  Article  Google Scholar 

  7. [7]

    Chacón Rebollo, T. and Lewandowski, R., Mathematical and Numerical Foundations of Turbulence Models and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, New York, 2014.

    Google Scholar 

  8. [8]

    Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems, Springer Monographs in Mathematics, Springer-Verlag, New York, 2011.

    Google Scholar 

  9. [9]

    Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

    Google Scholar 

  10. [10]

    Kufner, A., Weighted Sobolev Spaces, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985.

    Google Scholar 

  11. [11]

    Ladyžhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Second English edition, Mathematics and its Applications, vol. 2, Gordon and Breach Science Publishers, New York, 1969.

    Google Scholar 

  12. [12]

    Landes R. and Mustonen, V., A strongly nonlinear parabolic initial-boundary value problem, Ark. Mat., 25(1), 1987, 29–40.

    MathSciNet  Article  Google Scholar 

  13. [13]

    Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63(1), 1934, 193–248.

    MathSciNet  Article  Google Scholar 

  14. [14]

    Lions, J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.

    Google Scholar 

  15. [15]

    Málek, J., Nečas, J., Rokyta, M. and Ružička, M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London, 1996.

    Google Scholar 

  16. [16]

    Obuhov, A. M., Turbulence in an atmosphere with inhomogeneous temperature, Akad. Nauk SSSR. Trudy Inst. Teoret. Geofiz., 1, 1946, 95–115.

    MathSciNet  Google Scholar 

  17. [17]

    Prandtl, L., Prandtl—Essentials of Fluid Mechanics, 3rd ed., Applied Mathematical Sciences, vol. 158, Springer-Verlag, New York, 2010.

    Google Scholar 

  18. [18]

    Rong, Y., Layton, W. J. and Zhao, H., Extension of a simplified Baldwin-Lomax Model to nonequilibrium turbulence: Model, analysis and algorithms, Numer. Methods Partial Differential Equations, 35(5), 2019, 1821–1846.

    MathSciNet  Article  Google Scholar 

  19. [19]

    Smagorinsky, J., On the application of numerical methods to the solution of systems of partial differential equations arising in meteorology, Frontiers of Numerical Mathematics, University of Wisconsin Press, Madison, Wis., 1960, 107–125.

    Google Scholar 

  20. [20]

    Stein, E., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    Google Scholar 

  21. [21]

    van Driest, E. R., On turbulent flow near a wall, J. Aerospace Sci., 23, 1956, 1007–1011.

    MATH  Google Scholar 

  22. [22]

    von Wahl, W., Estimating ∇u by div u and curl u, Math. Methods Appl. Sci., 15(2), 1992, 123–143.

    MathSciNet  Article  Google Scholar 

Download references


The first author thanks Prof. Tatsien Li for the kind invitation to the conference “China-Italy Conference on PDEs and Their Applications” (Fudan Univ. Shanghai, PRC, Dec 9–13, 2019). The results of the paper have been developed also after discussion originated during the conference.

The second author thanks Prof. William J. Layton for bringing the Baldwin & Lomax model to his attention.

Author information



Corresponding authors

Correspondence to Luigi C. Berselli or Roger Lewandowski or Dinh Duong Nguyen.

Additional information

This work was supported by the group GNAMPA of INdAM and the University of Pisa, under grant: PRA_2018_52 UNIPI.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berselli, L.C., Lewandowski, R. & Nguyen, D.D. Rotational Forms of Large Eddy Simulation Turbulence Models: Modeling and Mathematical Theory. Chin. Ann. Math. Ser. B 42, 17–40 (2021).

Download citation


  • Fluid mechanics
  • Turbulence models
  • Rotational Large Eddy Simulation models
  • Navier-Stokes equations

2000 MR Subject Classification

  • 76D05
  • 35Q30
  • 76F65
  • 76D03
  • 35Q35