Advertisement

Journal of Computer Science and Technology

, Volume 33, Issue 6, pp 1178–1191 | Cite as

Isometric 3D Shape Partial Matching Using GD-DNA

  • Guo-Guang Du
  • Cong-Li Yin
  • Ming-Quan ZhouEmail author
  • Zhong-Ke Wu
  • Ya-Chun Fan
  • Fu-Qing DuanEmail author
  • Peng-Bo Zhou
Regular Paper
  • 27 Downloads

Abstract

Isometric 3D shape partial matching has attracted a great amount of interest, with a plethora of applications ranging from shape recognition to texture mapping. In this paper, we propose a novel isometric 3D shape partial matching algorithm using the geodesic disk Laplace spectrum (GD-DNA). It transforms the partial matching problem into the geodesic disk matching problem. Firstly, the largest enclosed geodesic disk extracted from the partial shape is matched with geodesic disks from the full shape by the Laplace spectrum of the geodesic disk. Secondly, Generalized Multi-Dimensional Scaling algorithm (GMDS) and Euclidean embedding are conducted to establish final point correspondences between the partial and the full shape using the matched geodesic disk pair. The proposed GD-DNA is discriminative for matching geodesic disks, and it can well solve the anchor point selection problem in challenging partial shape matching tasks. Experimental results on the Shape Retrieval Contest 2016 (SHREC’16) benchmark validate the proposed method, and comparisons with isometric partial matching algorithms in the literature show that our method has a higher precision.

Keywords

isometric partial matching geodesic disk Laplace spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11390_2018_1880_MOESM1_ESM.pdf (650 kb)
ESM 1 (PDF 650 kb)

References

  1. [1]
    Bronstein A M, Bronstein M, Kimmel R. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Processings of National Academy of Sciences of the United States of America, 2006, 103(5): 1168-1172.Google Scholar
  2. [2]
    Sahillioğlu Y, Yemez Y. Scale normalization for isometric shape matching. Computer Graphics Forum, 2012, 31(7): 2233-2240.Google Scholar
  3. [3]
    Sahillioğlu Y, Yemez Y. Partial 3-D correspondence from shape extremities. Computer Graphics Forum, 2014, 33(6): 63-76.Google Scholar
  4. [4]
    Rodolà E, Cosmo L, Bronstein M M, Torsello A, Cremers D. Partial functional correspondence. Computer Graphics Forum, 2017, 36(1): 222-236.Google Scholar
  5. [5]
    Litany O, Rodolà E, Bronstein A M, Bronstein M M, Cremers D. Non-rigid puzzles. Computer Graphics Forum, 2016, 35(5): 135-143.Google Scholar
  6. [6]
    Litany O, Rodolà E, Bronstein A M, Bronstein M M. Fully spectral partial shape matching. Computer Graphics Forum, 2017, 36(2): 247-258.Google Scholar
  7. [7]
    Belongie S J, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(4): 509-522.Google Scholar
  8. [8]
    Sun J, Ovsjanikov M, Guibas L. A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum, 2010, 28(5): 1383-1392.Google Scholar
  9. [9]
    Aubry M, Schlickewei U, Cremers D. The wave kernel signature: A quantum mechanical approach to shape analysis. In Proc. IEEE International Conference on Computer Vision Workshops, Nov. 2011, pp.1626-1633.Google Scholar
  10. [10]
    van Kaick O, Zhang H, Hamarneh G, Cohen-Or D. A survey on shape correspondence. Computer Graphics Forum, 2011, 30(6): 1681-1707.Google Scholar
  11. [11]
    Masci J, Boscaini D, Bronstein M M, Vandergheynst P. Geodesic convolutional neural networks on Riemannian manifolds. In Proc. the 2015 IEEE International Conference on Computer Vision Workshop, Dec. 2015, pp.832-840.Google Scholar
  12. [12]
    Masci J, Rodolà, Emanuele, Boscaini D, Bronstein M M, Li H. Geometric deep learning. In Proc. SIGGRAPH Asia 2016 Courses, Dec. 2016, Article No. 1.Google Scholar
  13. [13]
    Borg I, Groenen P J F. Modern Multidimensional Scaling. Springer-Verlag New York, 2005.Google Scholar
  14. [14]
    Lipman Y, Funkhouser T. Möbius voting for surface correspondence. ACM Transactions on Graphics, 2009, 28(3): Article No. 72.Google Scholar
  15. [15]
    Rodolà E, Bronstein A M, Albarelli A, Bergamasco F. A game-theoretic approach to deformable shape matching. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2012, pp.182-189.Google Scholar
  16. [16]
    Rodolà E, Torsello A, Harada T, Kuniyoshi Y, Cremers D. Elastic net constraints for shape matching. In Proc. IEEE International Conference on Computer Vision, Dec. 2013, pp.1169-1176.Google Scholar
  17. [17]
    Ovsjanikov M, Ben-Chen M, Solomon J, Butscher A, Guibas L. Functional maps: A flexible representation of maps between shapes. ACM Transactions on Graphics, 2012, 31(4): Article No. 30.Google Scholar
  18. [18]
    Kovnatsky A, Bronstein M M, Bresson X, Vandergheynst P. Functional correspondence by matrix completion. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2015, pp.905-914.Google Scholar
  19. [19]
    Zaharescu A, Boyer E, Varanasi K, Horaud R. Surface feature detection and description with applications to mesh matching. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp.373-380.Google Scholar
  20. [20]
    Pokrass J, Bronstein A M, Bronstein M M. Partial shape matching without point-wise correspondence. Numerical Mathematics: Theory Methods & Applications, 2013, 6(1): 223-244.Google Scholar
  21. [21]
    Brunton A, Wand M, Wuhrer S, Seidel H P, Weinkauf T. A low-dimensional representation for robust partial isometric correspondences computation. Graphical Models, 2014, 76(2): 70-85.Google Scholar
  22. [22]
    van Kaick O, Zhang H, Hamarneh G. Bilateral maps for partial matching. Computer Graphics Forum, 2013, 32(6): 189-200.Google Scholar
  23. [23]
    Ovsjanikov M, Mérigot Q, Mémoli F, Guibas L. One point isometric matching with the heat kernel. Computer Graphics Forum, 2010, 29(5): 1555-1564.Google Scholar
  24. [24]
    Reuter M, Wolter F E, Peinecke N. Laplace-Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Computer-Aided Design, 2006, 38(4): 342-366.Google Scholar
  25. [25]
    Reuter M, Wolter F E, Shenton M, Niethammer M. Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Computer-Aided Design, 2009, 41(10): 739-755.Google Scholar
  26. [26]
    Reuter M, Spagnuolo M. Discrete Laplace-Beltrami operators for shape analysis and segmentation. In Proc. IEEE International Conference on Shape Modeling and Applications, June 2009, pp.381-390.Google Scholar
  27. [27]
    Mémoli F, Sapiro G. A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 2005, 5(3): 313-347.Google Scholar
  28. [28]
    Cosmo L, Rodolà E, Bronstein M, Torsello A, Cremers D, Sahillioğlu Y. SHREC’16: Partial matching of deformable shapes. In Proc. Eurographics Workshop on 3D Object Retrieval, May 2016, pp.61-67.Google Scholar
  29. [29]
    Bronstein A M, Bronstein M M, Kimmel R. Numerical Geometry of Non-Rigid Shapes. Springer-Verlag, New York, 2009.Google Scholar
  30. [30]
    Kim V G, Lipman Y, Funkhouser T. Blended intrinsic maps. ACM Transactions on Graphics, 2011, 30(4): Article No. 79.Google Scholar
  31. [31]
    Mitchell J S B, Mount D M, Papadimitriou C H. The discrete geodesic problem. SIAM Journal on Computing, 1987, 16(4): 647-668.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guo-Guang Du
    • 1
    • 2
  • Cong-Li Yin
    • 1
    • 2
  • Ming-Quan Zhou
    • 1
    • 2
    Email author
  • Zhong-Ke Wu
    • 1
    • 2
  • Ya-Chun Fan
    • 1
    • 2
  • Fu-Qing Duan
    • 1
    • 2
    Email author
  • Peng-Bo Zhou
    • 1
    • 2
  1. 1.College of Information Science and TechnologyBeijing Normal UniversityBeijingChina
  2. 2.Engineering Research Center of Virtual Reality and Applications, Ministry of EducationBeijingChina

Personalised recommendations