Journal of Computer Science and Technology

, Volume 33, Issue 6, pp 1101–1124 | Cite as

An Efficient Message Dissemination Scheme for Minimizing Delivery Delay in Delay Tolerant Networks

  • En Wang
  • Wei-Shih Yang
  • Yong-Jian YangEmail author
  • Jie Wu
  • Wen-Bin Liu
Regular Paper


Delay tolerant networks (DTNs) are a kind of sparse and highly mobile wireless networks, where no stable connectivity guarantee can be assumed. Most DTN users have several points of interest (PoIs), and they enjoy disseminating messages to the other users of the same PoI through WiFi. In DTNs, some time-sensitive messages (disaster warnings, search notices, etc.) need to be rapidly propagated among specific users or areas. Therefore, finding a path from the source to the destination with the shortest delay is the key problem. Taking the dissemination cost into consideration, we propose an efficient message dissemination strategy for minimizing delivery delay (MDMD) in DTNs, which first defines the user’s activeness according to the transiting habit among different PoIs. Furthermore, depending on the activeness, an optimal user in each PoI is selected to constitute the path with the shortest delay. Finally, the MDMD with inactive state (on the way between PoIs) is further proposed to enhance the applicability. Simulation results show that, compared with other dissemination strategies, MDMD achieves the lowest average delay, and the comparable average hopcounts, on the premise that the delivery ratio is guaranteed to be 100% by the sufficient simulation time.


delay tolerant network (DTN) point of interest (PoI) dissemination strategy minimizing delay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11390_2018_1875_MOESM1_ESM.pdf (232 kb)
ESM 1 (PDF 232 kb)


  1. [1]
    Burleigh S, Hooke A, Torgerson L. Delay-tolerant networking: An approach to interplanetary Internet. IEEE Communications Magazine, 2003, 41(6): 128-136.CrossRefGoogle Scholar
  2. [2]
    Wang E, Yang Y, Wu J. A Knapsack-based buffer management strategy for delay-tolerant networks. Journal of Parallel and Distributed Computing, 2015, 86(C): 1-15.Google Scholar
  3. [3]
    Akyildiz I F, Akan Ö, Chen C, Fang J, Su W. InterPlaNetary Internet: State-of-the-art and research challenges. Computer Networks, 2003, 43(2): 75-112.CrossRefGoogle Scholar
  4. [4]
    Uddin M Y S, Ahmadi H, Abdelzaher T, Kravets R. Intercontact routing for energy constrained disaster response networks. IEEE Transactions on Mobile Computing, 2013, 12(10): 1986-1998.CrossRefGoogle Scholar
  5. [5]
    Juang P, Oki H, Wang Y, Martonosi M, Peh L S, Rubenstein D. Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In Proc. the 10th ASPLOS., Oct. 2002, pp.96-107.Google Scholar
  6. [6]
    Yang S, Yeo C K, Lee F B S. Cooperative duty cycling for energy-efficient contact discovery in pocket switched networks. IEEE Transactions on Vehicular Technology, 2013, 62(4): 1815-1826.CrossRefGoogle Scholar
  7. [7]
    Wu J, Wang Y. Hypercube-based multipath social feature routing in human contact networks. IEEE Transactions on Computers, 2014, 63(2): 383-396.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Xiao M, Wu J, Huang L. Community-aware opportunistic routing in mobile social networks. IEEE Transactions on Computers, 2014, 63(7): 1682-1695.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Zhang X, Neglia G, Kurose J, Towsley D F. Performance modeling of epidemic routing. Computer Networks, 2007, 51(10): 2867-2891.CrossRefGoogle Scholar
  10. [10]
    Erramilli V, Crovella M, Chaintreau A, Diot C. Delegation forwarding. In Proc. the 9th ACM MobiHoc, May 2008, pp.251-260.Google Scholar
  11. [11]
    Dubois-Ferriere H, Grossglauser M, Vetterli M. Age matters: Efficient route discovery in mobile ad hoc networks using encounter ages. In Proc. ACM MobiHoc 2003, June 2003, pp.257-266.Google Scholar
  12. [12]
    Wei K, Guo S, Zeng D, Xu K, Li K. Exploiting small world properties for message forwarding in delay tolerant networks. IEEE Transactions on Computers, 2015, 64(10): 2809-2818.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Lu Y, Wang W, Chen L, Zhang Z, Huang A. Distance-based energy-efficient opportunistic broadcast forwarding in mobile delay-tolerant networks. IEEE Transactions on Vehicular Technology, 2016, 65(7): 5512-5524.CrossRefGoogle Scholar
  14. [14]
    Elwhishi A, Ho P H, Naik K, Shihada B. A novel message scheduling framework for delay tolerant networks routing. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(5): 871-880.CrossRefGoogle Scholar
  15. [15]
    Krifa A, Barakat C, Spyropoulos T. Message drop and scheduling in DTNs: Theory and practice. IEEE Transactions on Mobile Computing, 2012, 11(9): 1470-1483.CrossRefGoogle Scholar
  16. [16]
    Wang E, Yang Y, Wu J, Liu W. A buffer management strategy on spray and wait routing protocol in DTNs. In Proc. the 44th IEEE ICPP, Sept. 2015, pp.799-808.Google Scholar
  17. [17]
    Huang J, Liu W, Su Y, Wang F. Multi-rate combination of partial information-based routing and adaptive modulation and coding for space deterministic delay/disruption tolerant networks. IET Communications, 2017, 11(9): 1365-1370.CrossRefGoogle Scholar
  18. [18]
    Seregina T, Brun O, El-Azouzi R, Prabhu B J. On the design of a reward-based incentive mechanism for delay tolerant networks. IEEE Transactions on Mobile Computing, 2017, 16(2): 453-465.CrossRefGoogle Scholar
  19. [19]
    Wang R, Qiu M, Zhao K, Qian Y. Optimal RTO timer for best transmission efficiency of DTN protocol in deep-space vehicle communications. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2536-2550.CrossRefGoogle Scholar
  20. [20]
    Li F, Jiang H, Li H, Cheng Y, Wang Y. SEBAR: Social-energy-based routing for mobile social delay-tolerant networks. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7195-7206.CrossRefGoogle Scholar
  21. [21]
    Sabbagh A, Wang R, Zhao K, Bian D. Bundle protocol over highly asymmetric deep-space channels. IEEE Transactions on Wireless Communications, 2017, 16(4): 2478-2489.CrossRefGoogle Scholar
  22. [22]
    Sakai K, Sun M T, Ku W S, Wu J, Alanazi F S. Performance and security analyses of onion-based anonymous routing for delay tolerant networks. IEEE Transactions on Mobile Computing, 2017, 16(12): 3473-3487.CrossRefGoogle Scholar
  23. [23]
    Lindgren A, Doria A, Schelén O. Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 2003, 7(3): 19-20.CrossRefGoogle Scholar
  24. [24]
    Zhang X, Kurose J, Levine B N, Towsley D, Zhang H. Study of a bus-based disruption-tolerant network: Mobility modeling and impact on routing. In Proc. the 13th MobiCom, Sept. 2007, pp.195-206.Google Scholar
  25. [25]
    Spyropoulos T, Psounis K, Raghavendra C S. Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transactions on Networking, 2008, 16(1): 77-90.CrossRefGoogle Scholar
  26. [26]
    Wang E, Yang Y, Wu J, Yang W S, Liu W B. A lightweight message dissemination strategy for minimizing delay in online social networks. In Proc. Globecom, Dec. 2015, pp.1-6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • En Wang
    • 1
  • Wei-Shih Yang
    • 2
  • Yong-Jian Yang
    • 1
    Email author
  • Jie Wu
    • 3
  • Wen-Bin Liu
    • 1
  1. 1.Department of Computer Science and TechnologyJilin UniversityChangchunChina
  2. 2.Department of MathematicsTemple UniversityPhiladelphiaU.S.A.
  3. 3.Department of Computer and Information ScienceTemple UniversityPhiladelphiaU.S.A.

Personalised recommendations