Skip to main content
Log in

CrowdOLA: Online Aggregation on Duplicate Data Powered by Crowdsourcing

  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Recently there is an increasing need for interactive human-driven analysis on large volumes of data. Online aggregation (OLA), which provides a quick sketch of massive data before a long wait of the final accurate query result, has drawn significant research attention. However, the direct processing of OLA on duplicate data will lead to incorrect query answers, since sampling from duplicate records leads to an over representation of the duplicate data in the sample. This violates the prerequisite of uniform distributions in most statistical theories. In this paper, we propose CrowdOLA, a novel framework for integrating online aggregation processing with deduplication. Instead of cleaning the whole dataset, CrowdOLA retrieves block-level samples continuously from the dataset, and employs a crowd-based entity resolution approach to detect duplicates in the sample in a pay-as-you-go fashion. After cleaning the sample, an unbiased estimator is provided to address the error bias that is introduced by the duplication. We evaluate CrowdOLA on both real-world and synthetic workloads. Experimental results show that CrowdOLA provides a good balance between efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hellerstein J M, Haas P J, Wang H J. Online aggregation. In Proc. ACM SIGMOD Int. Conf. Management of Data, May 1997, pp.171-182.

  2. Doulkeridis C, Nørvåg K. A survey of large-scale analytical query processing in MapReduce. VLDB J., 2014, 23(3): 355-380.

    Article  Google Scholar 

  3. Elmagarmid A K, Ipeirotis P G, Verykios V S. Duplicate record detection: A survey. IEEE Trans. Knowl. Data Eng., 2007, 19(1): 1-16.

    Article  Google Scholar 

  4. Charikar M, Chaudhuri S, Motwani R, Narasayya V R. Towards estimation error guarantees for distinct values. In Proc. ACM SIGMOD Int. Conf. Management of Data, May 2000, pp.268-279.

  5. Wang J, Krishnan S, Franklin M J, Goldberg K, Kraska T, Milo T. A sample-and-clean framework for fast and accurate query processing on dirty data. In Proc. ACM SIGMOD Int. Conf. Management of Data, June 2014, pp.469-480.

  6. Haas P J. Large-sample and deterministic confidence intervals for online aggregation. In Proc. the 9th Int. Conf. Scientific and Statistical Database Management, August 1997, pp.51-63.

  7. Haas P J, Hellerstein J M. Ripple joins for online aggregation. In Proc. ACM SIGMOD Int. Conf. Management of Data, June 1999, pp.287-298.

  8. Jermaine C, Dobra A, Arumugam S, Joshi S, Pol A. A disk-based join with probabilistic guarantees. In Proc. ACM SIGMOD Int. Conf. Management of Data, June 2005, pp.563-574.

  9. Luo G, Ellmann C J, Haas P J, Naughton J F. A scalable hash ripple join algorithm. In Proc. ACM SIGMOD Int. Conf. Management of Data, June 2002, pp.252-262.

  10. Condie T, Conway N, Alvaro P, Hellerstein J M, Gerth J, Talbot J, Elmeleegy K, Sears R. Online aggregation and continuous query support in MapReduce. In Proc. ACM SIGMOD Int. Conf. Management of Data, June 2010, pp.1115-1118.

  11. Shi Y, Meng X, Wang F, Gan Y. You can stop early with COLA: Online processing of aggregate queries in the cloud. In Proc. the 21st Int. Conf. Information and Knowledge Management, October 2012, pp.1223-1232.

  12. Pansare N, Borkar V R, Jermaine C, Condie T. Online aggregation for large MapReduce jobs. PVLDB, 2011, 4(11): 1135-1145.

    Google Scholar 

  13. Zeng K, Agarwal S, Stoica I. iOLAP: Managing uncertainty for efficient incremental OLAP. In Proc. ACM SIGMOD Int. Conf. Management of Data, July 2016, pp.1347-1361.

  14. Köpcke H, Rahm E. Frameworks for entity matching: A comparison. Data Knowl. Eng., 2010, 69(2): 197-210.

    Article  Google Scholar 

  15. Hernández M A, Stolfo S J. The merge/purge problem for large databases. In Proc. ACM SIGMOD Int. Conf. Management of Data, May 1995, pp.127-138.

  16. McCallum A, Nigam K, Ungar L H. Efficient clustering of high-dimensional data sets with application to reference matching. In Proc. ACM SIGMOD Int. Conf. Management of Data, August 2000, pp.169-178.

  17. Ananthakrishna R, Chaudhuri S, Ganti V. Eliminating fuzzy duplicates in data warehouses. In Proc. the 28th Int. Conf. Very Large Data Bases, August 2002, pp.586-597.

  18. Bhattacharya I, Getoor L. Collective entity resolution in relational data. TKDD, 2007, 1(1): 5.

    Article  Google Scholar 

  19. Altowim Y, Kalashnikov D V, Mehrotra S. Progressive approach to relational entity resolution. PVLDB, 2014, 7(11): 999-1010.

    Google Scholar 

  20. Whang S E, Marmaros D, Garcia-Molina H. Pay-as-yougo entity resolution. IEEE Trans. Knowl. Data Eng., 2013, 25(5): 1111-1124.

    Article  Google Scholar 

  21. Gruenheid A, Dong X L, Srivastava D. Incremental record linkage. PVLDB, 2014, 7(9): 697-708.

    Google Scholar 

  22. Whang S E, Garcia-Molina H. Incremental entity resolution on rules and data. VLDB J., 2014, 23(1): 77-102.

    Article  Google Scholar 

  23. Li G, Wang J, Zheng Y, Franklin M J. Crowdsourced data management: A survey. In Proc. the 33rd IEEE Int. Conf. Data Engineering, April 2017, pp.39-40.

  24. Zheng Y, Cheng R, Maniu S, Mo L. On optimality of jury selection in crowdsourcing. In Proc. the 18th Int. Conf. Extending Database Technology, March 2015, pp.193-204.

  25. Zheng Y, Li G, Li Y, Shan C, Cheng R. Truth inference in crowdsourcing: Is the problem solved? PVLDB, 2017, 10(5): 541-552.

    Google Scholar 

  26. Zheng Y, Li G, Cheng R. DOCS: Domain-aware crowdsourcing system. PVLDB, 2016, 10(4): 361-372.

    Google Scholar 

  27. Zheng Y, Wang J, Li G, Cheng R, Feng J. QASCA: A quality-aware task assignment system for crowdsourcing applications. In Proc. ACM SIGMOD Int. Conf. Management of Data, May 31-June 4, 2015, pp.1031-1046.

  28. Xiong H, Zhang D, Chen G, Wang L, Gauthier V, Barnes L E. iCrowd: Near-optimal task allocation for piggyback crowdsensing. IEEE Trans. Mob. Comput., 2016, 15(8): 2010-2022.

    Article  Google Scholar 

  29. Hu H, Zheng Y, Bao Z, Li G, Feng J, Cheng R. Crowdsourced POI labelling: Location-aware result inference and task assignment. In Proc. the 32nd IEEE Int. Conf. Data Engineering, May 2016, pp.61-72.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Zhen Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, AZ., Li, JZ., Gao, H. et al. CrowdOLA: Online Aggregation on Duplicate Data Powered by Crowdsourcing. J. Comput. Sci. Technol. 33, 366–379 (2018). https://doi.org/10.1007/s11390-018-1824-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-018-1824-5

Keywords

Navigation