Skip to main content
Log in

Surface Tension Model Based on Implicit Incompressible Smoothed Particle Hydrodynamics for Fluid Simulation

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In order to capture stable and realistic microscopic features of fluid surface, a surface tension and adhesion method based on implicit incompressible SPH (smoothed particle hydrodynamics) is presented in this paper. It gives a steady and fast tension model and can solve the problem of not considering adhesion. Molecular cohesion and surface minimization are considered for surface tension, and adhesion is added to show the microscopic characteristics of the surface. To simulate surface tension and adhesion stably and efficiently, the surface tension and adhesion model is integrated to an implicit incompressible SPH method. The experimental results show that the method can better simulate surface features in a variety of scenarios compared with previous methods and meanwhile ensure stability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335-354.

    Article  MathSciNet  MATH  Google Scholar 

  2. Morris J P. Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333–353.

    Article  MathSciNet  MATH  Google Scholar 

  3. Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In Proc. the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2003, pp.154-159.

  4. Müller M, Solenthaler B, Keiser R et al. Particle-based fluid-fluid interaction. In Proc. the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2005, pp.591-594.

  5. Nugent S, Posch H A. Liquid drops and surface tension with smoothed particle applied mechanics. Physical Review E, 2000, 62(4): 4968-4975.

    Article  Google Scholar 

  6. Becker M, Teschner M. Weakly compressible SPH for free surface flows. In Proc. the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Aug. 2007, pp.209-217.

  7. Tartakovsky A, Meakin P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical Review E, 2005, 72(2): 254-271.

    Article  Google Scholar 

  8. Akinci N, Akinci G, Teschner M. Versatile surface tension and adhesion for SPH fluids. ACM Transactions on Graphics, 2013, 32(6): Article No. 182.

  9. Clavet S, Beaudoin P, Poulin P. Particle based viscoelastic fluid simulation. In Proc. the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2005, pp.219-228.

  10. Yu J, Wojtan C, Turk G et al. Explicit mesh surfaces for particle based fluids. Computer Graphics Forum, 2012, 31(2): 815-824.

    Article  Google Scholar 

  11. Steele K, Cline D, Egbert P K et al. Modeling and rendering viscous liquids. Computer Animation & Virtual Worlds, 2004, 15(3/4): 183-192.

    Article  Google Scholar 

  12. Schechter H, Bridson R. Ghost SPH for animating water. ACM Transactions on Graphics, 2012, 31(4): Article No. 61.

  13. He X, Liu N, Wang G et al. Staggered meshless solid-fluid coupling. ACM Transactions on Graphics, 2012, 31(6): 439-445.

    Article  Google Scholar 

  14. Liu G R, Liu M B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2004

  15. Akinci N, Ihmsen M, Akinci G et al. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics, 2012, 31(4): Article No. 62.

  16. Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Transactions on Graphics, 2009, 28(3): 341-352.

    Article  Google Scholar 

  17. Bodin K, Lacoursiere C, Servin M. Constraint fluids. IEEE Transactions on Visualization & Computer Graphics, 2012, 18(3): 516-526.

    Article  Google Scholar 

  18. Cummins S J, Rudman M. An SPH projection method. Journal of Computational Physics, 1999, 152(2): 584-607.

    Article  MathSciNet  MATH  Google Scholar 

  19. Premžoe S, Tasdizen T, Bigler J et al. Particle-based simulation of fluids. Computer Graphics Forum, 22(3): 401-410.

  20. Losasso F, Talton J O, Kwatra N et al. Two-way coupled SPH and particle level set fluid simulation. IEEE Transactions on Visualization & Computer Graphics, 2008, 14(4): 797-804.

  21. Ihmsen M, Cornelis J, Solenthaler B et al. Implicit incompressible SPH. IEEE Transactions on Visualization & Computer Graphics, 2014, 20(3): 426-435.

    Article  Google Scholar 

  22. Yang T, Lin M C, Martin R R et al. Versatile interactions at interfaces for SPH-based simulations. In Proc. ACM Siggraph/Eurographics Symposium on Computer Animation, July 2016, pp.57-66.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Juan Ban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 279 kb)

ESM 2

(WMV 10849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XK., Ban, XJ., Zhang, YL. et al. Surface Tension Model Based on Implicit Incompressible Smoothed Particle Hydrodynamics for Fluid Simulation. J. Comput. Sci. Technol. 32, 1186–1197 (2017). https://doi.org/10.1007/s11390-017-1793-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-017-1793-0

Keywords

Navigation