Skip to main content
Log in

A Survey of Visual Analytic Pipelines

  • Survey
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Visual analytics has been widely studied in the past decade. One key to make visual analytics practical for both research and industrial applications is the appropriate definition and implementation of the visual analytics pipeline which provides effective abstractions for designing and implementing visual analytics systems. In this paper we review the previous work on visual analytics pipelines and individual modules from multiple perspectives: data, visualization, model and knowledge. In each module we discuss various representations and descriptions of pipelines inside the module, and compare the commonalities and the differences among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fayyad U M, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery: An overview. In Advances in Knowledge Discovery and Data Mining, Fayyad U M, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (eds.), American Association for Artificial Intelligence, Menlo Park, CA, USA, 1996, pp.1-34.

  2. Keim D, Kohlhammer J, Ellis G, Mansmann F (eds.). Mastering the information age: Solving problems with visual analytics. http://www.vismaster.eu/wp-content/uploads/ 2010/11/title-page-to-chapter-1.pdf, June 2016.

  3. Keim D, Andrienko G, Fekete J D et al. Visual analytics: Definition, process, and challenges. In Lecture Notes in Computer Science 4950, Kerren A, Stasko J T, Fekete J D et al. (eds.), Springer Berlin Heidelberg, 2008, pp.154-175.

  4. Zhang L, Stoffel A, Behrisch M et al. Visual analytics for the big data era — A comparative review of state-of-the-art commercial systems. In Proc. IEEE Conference on Visual Analytics Science and Technology, Oct. 2012, pp.173-182.

  5. Sun G D, Wu Y C, Liang R H, Liu S X. A survey of visual analytics techniques and applications: State-of-the-art research and future challenges. Journal of Computer Science and Technology, 2013, 28(5): 852-867.

    Article  Google Scholar 

  6. Moreland K. A survey of visualization pipelines. IEEE Transactions on Visualization and Computer Graphics, 2014, 19(3): 367-378.

    Article  Google Scholar 

  7. Alexander E, Gleicher M. Task-driven comparison of topic models. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 320-329.

    Article  Google Scholar 

  8. Sun M, North C, Ramakrishnan N. A five-level design framework for bicluster visualizations. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1713-1722.

    Article  Google Scholar 

  9. Zhang J, E Y, Ma J et al. Visual analysis of public utility service problems in a metropolis. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1843-1852.

  10. Keim D A. Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(1): 1-8.

    Article  MathSciNet  Google Scholar 

  11. Walker J, Borgo R, Jones M W. TimeNotes: A study on effective chart visualization and interaction techniques for time-series data. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 549-558.

    Article  Google Scholar 

  12. Lu Y, Kruger R, Thom D, Wang F, Koch S, Ertl T, Maciejewski R. Integrating predictive analytics and social media. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Nov. 2014, pp.193-202.

  13. Ferstl F, Burger K, Westermann R. Streamline variability plots for characterizing the uncertainty in vector field ensembles. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 767-776.

    Article  Google Scholar 

  14. Skraba P, Wang B, Chen G, Rosen P. Robustness-based simplification of 2D steady and unsteady vector fields. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(8): 930-944.

    Article  Google Scholar 

  15. Wang Z, Ye T, Lu M et al. Visual exploration of sparse traffic trajectory data. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1813-1822.

    Article  Google Scholar 

  16. Wang F, Chen W, Wu F et al. A visual reasoning approach for data-driven transport assessment on urban roads. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Oct. 2014, pp.103-112.

  17. Huang X, Zhao Y, Ma C et al. TrajGraph: A graph-based visual analytics approach to studying urban network centralities using taxi trajectory data. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 160-169.

    Article  Google Scholar 

  18. Vrotsou K, Janetzko H, Navarra C et al. SimpliFly: A methodology for simplification and thematic enhancement of trajectories. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(1): 107-121.

    Article  Google Scholar 

  19. Palomo C, Guo Z, Silva C T, Freire J. Visually exploring transportation schedules. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 170-179.

    Article  Google Scholar 

  20. Scheepens R, Hurter C, Van De Wetering H, Van Wijk J J. Visualization, selection, and analysis of traffic flows. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 379-388.

    Article  Google Scholar 

  21. Di Lorenzo G, Sbodio M, Calabrese F et al. AllAboard: Visual exploration of cellphone mobility data to optimise public transport. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(2): 1036-1050.

    Article  Google Scholar 

  22. Wu W, Xu J, Zeng H et al. TelCoVis: Visual exploration of co-occurrence in urban human mobility based on Telco data. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 935-944.

    Article  Google Scholar 

  23. Zhao J, Cao N, Wen Z et al. #FluxFlow: Visual analysis of anomalous information spreading on social media. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1773-1782.

    Article  MathSciNet  Google Scholar 

  24. Huang D, Tory M, Aseniero B A et al. Personal visualization and personal visual analytics. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(3): 420-433.

    Article  Google Scholar 

  25. Janicke S, Focht J, Scheuermann G. Interactive visual profiling of musicians. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 200-209.

    Article  Google Scholar 

  26. Glueck M, Hamilton P, Chevalier F et al. PhenoBlocks: Phenotype comparison visualizations. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 101-110.

    Article  Google Scholar 

  27. Chen H, Zhang S, Chen W et al. Uncertainty-aware multidimensional ensemble data visualization and exploration. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(9): 1072-1086.

    Article  Google Scholar 

  28. Thudt A, Baur D, Huron S, Carpendale S. Visual mementos: Reflecting memories with personal data. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 369-378.

    Article  Google Scholar 

  29. Wongsuphasawat K, Moritz D, Anand A et al. Voyager: Exploratory analysis via faceted browsing of visualization recommendations. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 649-658.

    Article  Google Scholar 

  30. Lex A, Gehlenborg N, Strobelt H et al. UpSet: Visualization of intersecting sets. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1983-1992.

    Article  Google Scholar 

  31. Stahnke J, Dork M, Muller B, Thom A. Probing projections: Interaction techniques for interpreting arrangements and errors of dimensionality reductions. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 629-638.

    Article  Google Scholar 

  32. Dasgupta A, Poco J, Wei Y et al. Bridging theory with practice: An exploratory study of visualization use and design for climate model comparison. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(9): 996-1014.

    Article  Google Scholar 

  33. Quinan P S, Meyer M. Visually comparing weather features in forecasts. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 389-398.

    Article  Google Scholar 

  34. Accorsi P, Lalande N, Fabregue M et al. HydroQual: Visual analysis of river water quality. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Oct. 2014, pp.123-132.

  35. Crnovrsanin T, Muelder C, Ma K L. A system for visual analysis of radio signal data. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Oct. 2014, pp.33-42.

  36. Goodwin S, Dykes J, Slingsby A, Turkay C. Visualizing multiple variables across scale and geography. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 599-608.

    Article  Google Scholar 

  37. Kurzhals K, Hlawatsch M, Heimerl F et al. Gaze stripes: Image-based visualization of eye tracking data. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 1005-1014.

    Article  Google Scholar 

  38. Etemadpour R, Motta R, de Souza Paiva J G et al. Perception-based evaluation of projection methods for multidimensional data visualization. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(1): 81-94.

  39. Sun M, Mi P, North C, Ramakrishnan N. BiSet: Semantic edge bundling with biclusters for sensemaking. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 310-319.

    Article  Google Scholar 

  40. Brehmer M, Ingram S, Stray J, Munzner T. Overview: The design, adoption, and analysis of a visual document mining tool for investigative journalists. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 2271-2280.

    Article  Google Scholar 

  41. Gad S, Javed W, Ghani S et al. ThemeDelta: Dynamic segmentations over temporal topic models. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(5): 672-685.

    Article  Google Scholar 

  42. Fulda J, Brehmer M, Munzner T. TimeLineCurator: Interactive authoring of visual timelines from unstructured text. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 300-309.

    Article  Google Scholar 

  43. Bach B, Shi C, Heulot N et al. Time curves: Folding time to visualize patterns of temporal evolution in data. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 559-568.

    Article  Google Scholar 

  44. McCurdy N, Lein J, Coles K et al. Poemage: Visualizing the sonic topology of a poem. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 439-448.

    Article  Google Scholar 

  45. Brooks M, Amershi S, Lee B et al. FeatureInsight: Visual support for error-driven feature ideation in text classification. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Oct. 2015, pp.105-112.

  46. Wu Y, Liu S, Yan K et al. OpinionFlow: Visual analysis of opinion diffusion on social media. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1763-1772.

    Article  MathSciNet  Google Scholar 

  47. Gomez S R, Guo H, Ziemkiewicz C, Laidlaw D H. An insight- and task-based methodology for evaluating spatiotemporal visual analytics. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Oct. 2014, pp. 63-72.

  48. Yu B, Doraiswamy H, Chen X et al. Genotet: An interactive web-based visual exploration framework to support validation of gene regulatory networks. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1903-1912.

    Article  Google Scholar 

  49. Lenz O, Keul F, Bremm S et al. Visual analysis of patterns in multiple amino acid mutation graphs. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Oct. 2014, pp.93-102.

  50. Skanberg R, Vazquez P P, Guallar V, Ropinski T. Real-time molecular visualization supporting diffuse interreflections and ambient occlusion. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 718-727.

    Article  Google Scholar 

  51. Shi L, Wang C, Wen Z et al. 1.5 D egocentric dynamic network visualization. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(5): 624-637.

    Article  Google Scholar 

  52. Janikow C Z. Fuzzy decision trees: Issues and methods. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1998, 28(1): 1-14.

    Article  Google Scholar 

  53. Liu M, Wang X, Huang Y. Data preprocessing in data mining. Scientific Journal of Computer Science, 2000, 27(4): 54-57. (in Chinese)

    Google Scholar 

  54. Friedman M, Levy A Y, Millstein T D. Navigational plans for data integration. In Proc. the 16th National Conference on Artificial Intelligence and the 11th Innovative Applications of Artificial Intelligence Conference Innovative Applications of Artificial Intelligence, July 1999, pp.67-73.

  55. Lenzerini M. Data integration: A theoretical perspective. In Proc. the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, June 2002, pp.233-246.

  56. Rahm E, Do H H. Data cleaning: Problems and current approaches. IEEE Data Eng. Bull., 2000, 23(4): 3-13.

    Google Scholar 

  57. Chen W, Shen Z, Tao Y. Data Visualization. Publishing House of Electronics Industry, 2013. (in Chinese)

  58. Chi E H h, Riedl J T. An operator interaction framework for visualization systems. In Proc. the IEEE Symposium on Information Visualization, Oct. 1998, pp.63-70.

  59. Chi E H. A taxonomy of visualization techniques using the data state reference model. In Proc. the IEEE Symposium on Information Visualization, Oct. 2000, pp.69-75.

  60. Card S K, Mackinlay J D, Shneiderman B. Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, 1999.

  61. Van Wijk J J. The value of visualization. In Proc. the 16th IEEE Visualization Conference, Oct. 2005, pp.79-86.

  62. Munzner T. A nested model for visualization design and validation. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 921-928.

    Article  Google Scholar 

  63. Munzner T. Visualization Analysis and Design. CRC Press, 2014.

  64. Albo Y, Lanir J, Bak P, Rafaeli S. Off the radar: Comparative evaluation of radial visualization solutions for composite indicators. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 569-578.

    Article  Google Scholar 

  65. Gschwandtner T, Bogl M, Federico P, Miksch S. Visual encodings of temporal uncertainty: A comparative user study. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 539-548.

    Article  Google Scholar 

  66. Johansson J, Forsell C. Evaluation of parallel coordinates: Overview, categorization and guidelines for future research. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 579-588.

    Article  Google Scholar 

  67. Jianu R, Rusu A, Hu Y, Taggart D. How to display group information on node-link diagrams: An evaluation. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(11): 1530-1541.

    Article  Google Scholar 

  68. Lee J H, McDonnell K T, Zelenyuk A, Imre D, Mueller K. A structure-based distance metric for high-dimensional space exploration with multidimensional scaling. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(3): 351-364.

    Article  Google Scholar 

  69. Kieffer S, Dwyer T, Marriott K, Wybrow M. HOLA: Human-like orthogonal network layout. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 349-358.

    Article  Google Scholar 

  70. Raidou R G, Eisemann M, Breeuwer M, Eisemann E, Vilanova A. Orientation-enhanced parallel coordinate plots. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 589-598.

    Article  Google Scholar 

  71. Lehmann D J, Theisel H. Optimal sets of projections of high-dimensional data. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 609-618.

    Article  Google Scholar 

  72. Yoghourdjian V, Dwyer T, Gange G et al. High-quality ultra-compact grid layout of grouped networks. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 339-348.

    Article  Google Scholar 

  73. Wang Baldonado M Q, Woodruff A, Kuchinsky A. Guidelines for using multiple views in information visualization. In Proc. the Working Conference on Advanced Visual Interfaces, May 2000, pp.110-119.

  74. Cho I, Dou W, Wang D X, Sauda E, Ribarsky W. VAiRoma: A visual analytics system for making sense of places, times, and events in roman history. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 210-219.

  75. Roberts J C. State of the art: Coordinated & multiple views in exploratory visualization. In Proc. the 5th International Conference on Coordinated and Multiple Views in Exploratory Visualization, July 2007, pp.61-71.

  76. Papadopoulos C, Gutenko I, Kaufman A. VEEVVIE: Visual explorer for empirical visualization, VR and interaction experiments. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 111-120.

    Article  Google Scholar 

  77. Wang Y, Shen Q, Archambault D, Zhou Z, Zhu M, Yang S, Qu H. AmbiguityVis: Visualization of ambiguity in graph layouts. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 359-368.

    Article  Google Scholar 

  78. Roberts J C. Display models: Ways to classify visual representations. In Proc. IEEE Conference on Information Visualization, July 1999.

  79. Yi J S, Kang Y, Stasko J T, Jacko J A. Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1224-1231.

    Article  Google Scholar 

  80. Chuah M C, Roth S F. On the semantics of interactive visualizations. In Proc. the IEEE Symposium on Information Visualization, Oct. 1996, pp.29-36.

  81. Lam H. A framework of interaction costs in information visualization. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1149-1156.

    Article  Google Scholar 

  82. Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2005.

  83. Ma Y, Cao Z, Wei C. A survey of visualization-driven interactive data mining approaches. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(1): 1-8. (in Chinese)

    Google Scholar 

  84. De Oliveira M C F, Levkowitz H. From visual data exploration to visual data mining: A survey. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(3): 378-394.

    Article  Google Scholar 

  85. Ma K L. Machine learning to boost the next generation of visualization technology. IEEE Transactions on Computer Graphics and Applications, 2007, 27(5): 6-9.

    Article  Google Scholar 

  86. Bertini E, Lalanne D. Surveying the complementary role of automatic data analysis and visualization in knowledge discovery. In Proc. the ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery: Integrating Automated Analysis with Interactive Exploration, June 2009, pp.12-20.

  87. Klemm P, Lawonn K, Glaβer S et al. 3D regression heat map analysis of population study data. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 81-90.

    Article  Google Scholar 

  88. Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques (3rd edition). Morgan Kaufmann, 2011.

  89. Lu J, Ma Y, Chen W et al. Recent progress and trends in predictive visual analytics. Frontiers of Computer Science, 2016. (accepted)

  90. Jain A, Zongker D. Feature selection: Evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 153-158.

    Article  Google Scholar 

  91. Dash M, Liu H. Feature selection for classification. Intelligent Data Analysis, 1997, 1(1/2/3/4): 131-156.

  92. Dy J G, Brodley C E. Feature selection for unsupervised learning. The Journal of Machine Learning Research, 2004, 5: 845-889.

    MathSciNet  MATH  Google Scholar 

  93. Seo J, Shneiderman B. A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization, 2005, 4(2): 96-113.

    Article  Google Scholar 

  94. Krause J, Perer A, Bertini E. INFUSE: Interactive feature selection for predictive modeling of high dimensional data. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1614-1623.

    Article  Google Scholar 

  95. Markovitch S, Rosenstein D. Feature generation using general constructor functions. Machine Learning, 2002, 49(1): 59-98.

    Article  MATH  Google Scholar 

  96. Schuller B, Reiter S, Rigoll G. Evolutionary feature generation in speech emotion recognition. In Proc. the IEEE International Conference on Multimedia and Expo, July 2006, pp.5-8.

  97. Zahalka J, Worring M. Towards interactive, intelligent, and integrated multimedia analytics. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Oct. 2014, pp.3-12.

  98. Janetzko H, Sacha D, Stein M et al. Feature-driven visual analytics of soccer data. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Oct. 2014, pp.13-22.

  99. Zhao J, Gou L, Wang F, Zhou M. Pearl: An interactive visual analytic tool for understanding personal emotion style derived from social media. In Proc. the IEEE Conference on Visual Analytics Science and Technology, Oct. 2014, pp.203-212.

  100. Kay M, Heer J. Beyond Weber’s law: A second look at ranking visualizations of correlation. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 469-478.

    Article  Google Scholar 

  101. Harrison L, Yang F, Franconeri S, Chang R. Ranking visualizations of correlation using Weber’s law. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1943-1952.

    Article  Google Scholar 

  102. Bogl M, Aigner W, Filzmoser P et al. Visual analytics for model selection in time series analysis. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2237-2246.

    Article  Google Scholar 

  103. Ware C. Information Visualization: Perception for Design (3rd edition). Morgan Kaufmann, 2012, pp.388-391.

  104. Pirolli P, Card S. The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In Proc. the International Conference on Intelligence Analysis, May 2005, pp.2-4.

  105. Sacha D, Stoffel A, Stoffel F et al. Knowledge generation model for visual analytics. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1604-1613.

    Article  Google Scholar 

  106. Ma Y, Chen W, Ma X et al. EasySVM: A visual analysis approach for open-box support vector machines. In Proc. IEEE VIS Workshop on Visualization for Predictive Analytics, Nov. 2014.

  107. Sacha D, Senaratne H, Kwon B C, Ellis G, Keim D A. The role of uncertainty, awareness, and trust in visual analytics. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 240-249.

    Article  Google Scholar 

  108. Green T M, Ribarsky W, Fisher B. Building and applying a human cognition model for visual analytics. Information visualization, 2009, 8(1): 1-13.

    Article  Google Scholar 

  109. Dykes J, MacEachren A, Kraak M. Beyond tools: Visual support for the entire process of GIScience. In Exploring Geovisualization, Dykes J, MacEachren A M, Kraak M J (eds.), Elsevier Ltd., 2005, pp.83-99.

  110. Klein G, Moon B, Hoffman R R. Making sense of sensemaking 2: A macrocognitive model. IEEE Transactions on Intelligent Systems, 2006, 21(5): 88-92.

    Article  Google Scholar 

  111. Legrenzi P, Girotto V, Johnson-Laird P N. Focussing in reasoning and decision making. Cognition, 1993, 49(1/2): 37-66.

    Article  Google Scholar 

  112. Andrews C, North C. The impact of physical navigation on spatial organization for sensemaking. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2207-2216.

    Article  Google Scholar 

  113. Callahan S P, Freire J, Santos E et al. VisTrails: Visualization meets data management. In Proc. the 2006 ACM SIGMOD International Conference on Management of Data, June 2006, pp.745-747.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XM., Zhang, TY., Ma, YX. et al. A Survey of Visual Analytic Pipelines. J. Comput. Sci. Technol. 31, 787–804 (2016). https://doi.org/10.1007/s11390-016-1663-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-016-1663-1

Keywords

Navigation