Skip to main content
Log in

Stretch-Minimizing Volumetric Parameterization

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Not many methods for parameterization guarantee bijectivity or local injectivity, which is essential for foldoverfree mappings. Stretch-minimizing parameterization which is widely used for surface parameterization, provides foldover-free mappings and is capable of trading off between angle and area distortions. We extend its usage to volumetric parameterization in this paper by deriving a 3D version of stretch-distortion energy and incorporating fixed boundary conditions. Our energy definition includes a natural barrier term which effectively prevents elements from collapsing and folding over. It saves the effort in other methods of formulating additional energy or constrains to ensure the local injectivity. We propose to minimize the overall energy integrated over the whole mesh with a relaxation-enhanced solver and optimize the energy globally. This is different from the conventional approach of surface parameterization where mesh nodes are optimized individually. Compared with other volumetric parameterizations, our approach bears the advantages of stretch-minimizing method, being foldover-free and offering a good trade-off between angle and volume distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hormann K, Lévy B, Sheffer A. Mesh parameterization: Theory and practice. ACM SIGGRAPH Courses, 2007, Article No. 1.

  2. Wang Y, Gu X, Yau S T. Volumetric harmonic map. Communications in Information and Systems, 2004, 3(3): 191-202.

    MathSciNet  Google Scholar 

  3. Li X, Xu H,Wan S, Yin Z, YuW. Feature-aligned harmonic volumetric mapping using MFS. Computers and Graphics, 2010, 34(3): 242–251.

  4. Chao I, Pinkall U, Sanan P, Schr¨oder P. A simple geometric model for elastic deformations. ACM Transactions on Graphics, 2010, 29(4): 38:1–38:6.

  5. Gregson J, Sheffer A, Zhang E. All-Hex mesh generation via volumetric PolyCube deformation. Computer Graphics Forum, 2011, 30(5): 1407–1416.

    Article  Google Scholar 

  6. Paillé G P, Poulin P. As-conformal-as-possible discrete volumetric mapping. Computers & Graphics, 2012, 36(5): 427–433.

    Article  Google Scholar 

  7. Aigerman N, Lipman Y. Injective and bounded distortion mappings in 3D. ACM Transactions on Graphics, 2013, 32(4): 106:1–106:13.

  8. Schüller C, Kavan L, Panozzo D, SorkineHornung O. Locally injective mappings. Computer Graphics Forum, 2013, 32(5): 125–135.

    Article  Google Scholar 

  9. Kovalsky S, Aigerman N, Basri R, Lipman Y. Controlling singular values with semidefinite programming. ACM Transactions on Graphics, 2014, 33(4): 68:1–68:13.

  10. Hormann K, Greiner G. MIPS: An effcient global parametrization method. In Curve and Surface Design: SaintMalo 1999, Laurent P J, Sablonnière P, Schumaker L L (eds.), Nashville, TN: Vanderbilt University Press, 2000, pp.153–162.

  11. Sander P V, Snyder J, Gortler S J, Hoppe H. Texture mapping progressive meshes. In Proc. the 28th Annual Conference on Computer Graphics, Aug. 2001, pp.409-416.

  12. Pinkall U, Polthier K. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 1993, 2(1): 15–36.

    Article  MATH  MathSciNet  Google Scholar 

  13. Li X, Guo X, Wang H, He Y, Gu X, Qin H. Harmonic volumetric mapping for solid modeling applications. In Proc. the ACM Symposium on Solid and Physical Modeling, June 2007, pp.109-120.

  14. Li X, Guo X, Wang H, He Y, Gu X, Qin H. Meshless harmonic volumetric mapping using fundamental solution methods. IEEE Transactions on Automation Science and Engineering, 2009, 6(3): 409–422.

    Article  Google Scholar 

  15. Xu H, Yu W, Gu S, Li X. Biharmonic volumetric mapping using fundamental solutions. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(5): 787–798.

    Article  Google Scholar 

  16. Martin T, Cohen E, Kirby R M. Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Computer Aided Geometric Design, 2009, 26(6): 648–664.

    Article  MATH  MathSciNet  Google Scholar 

  17. Martin T, Cohen E. Volumetric parameterization of complex objects by respecting multiple materials. Computers & Graphics, 2010, 34(3): 187–197.

    Article  Google Scholar 

  18. Xia J, He Y, Han S, Fu C W, Luo F, Gu X. Parameterization of star-shaped volumes using Green’s functions. In Proc. the 6th Int. Conf. Advances in Geometric Modeling and Processing, June 2010, pp.219-235.

  19. Xia J, He Y, Yin X, Han S, Gu X. Direct-product volumetric parameterization of handlebodies via harmonic fields. In Proc. Shape Modeling International Conference, June 2010, pp.3–12.

  20. Floater M S. Mean value coordinates. Computer Aided Geometric Design, 2003, 20(1): 19–27.

    Article  MATH  MathSciNet  Google Scholar 

  21. Li X Y, Ju T, Hu S M. Cubic mean value coordinates. ACM Transactions on Graphics, 2013, 32(4): 126:1–126:10.

  22. Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics, 2005, 24(3): 561–566.

    Article  Google Scholar 

  23. Floater M S, Kós G, Reimers M. Mean value coordinates in 3D. Computer Aided Geometric Design, 2005, 22(7): 623–631.

    Article  MATH  MathSciNet  Google Scholar 

  24. Lipman Y, Levin D, Cohen-Or D. Green coordinates. ACM Transactions on Graphics, 2008, 27(3): 78:1–78:10.

  25. Irving G, Teran J, Fedkiw R. Invertible finite elements for robust simulation of large deformation. In Proc. the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, August 2004, pp.131-140.

  26. Nieser M, Reitebuch U, Polthier K. CubeCoverparameterization of 3D volumes. Computer Graphics Forum, 2011, 30(5): 1397–1406.

    Article  Google Scholar 

  27. Huang J, Tong Y, Wei H, Bao H. Boundary aligned smooth 3D cross-frame field. ACM Transactions on Graphics, 2011, 30(6): 143:1–143:8.

  28. Li Y, Liu Y, Xu W, Wang W, Guo B. All-Hex meshing using singularity-restricted field. ACM Transactions on Graphics, 2012, 31(6): 177:1–177:11.

  29. Livesu M, Vining N, Sheffer A, Gregson J, Scateni R. Poly-Cut: Monotone graph-cuts for PolyCube base-complex construction. ACM Transactions on Graphics, 2013, 32(6): 171:1–171:12.

  30. Yu W, Zhang K, Wan S, Li X. Optimizing polycube domain construction for hexahedral remeshing. Computer-Aided Design, 2014, 46: 58–68.

    Article  MathSciNet  Google Scholar 

  31. Huang J, Jiang T, Shi Z, Tong Y, Bao H, Desbrun M. l 1- based construction of polycube maps from complex shapes. ACM Transactions on Graphics, 2014, 33(3): 25:1–25:11.

  32. Sander P V, Gortler S, Snyder J, Hoppe H. Signalspecialized parameterization. In Proc. the 13th Eurographics Workshop on Rendering, June 2002, pp.87-98.

  33. Yoshizawa S, Belyaev A, Seidel H P. A fast and simple stretch-minimizing mesh parameterization. In Proc. Shape Modeling Applications, June 2004, pp.200-208.

  34. Lee T Y, Yen S W, Yeh I C. Texture mapping with hard constraints using warping scheme. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(2): 382–395.

    Article  Google Scholar 

  35. Kwok T H, Zhang Y, Wang C C. Effcient optimization of common base domains for cross parameterization. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(10): 1678–1692.

    Article  Google Scholar 

  36. Lévy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics, 2002, 21(3): 362–371.

    Article  Google Scholar 

  37. Liu L, Zhang L, Xu Y, Gotsman C, Gortler S J. A local/global approach to mesh parameterization. Computer Graphics Forum, 2008, 27(5): 1495–1504.

    Article  Google Scholar 

  38. Tutte WT. How to draw a graph. Proc. London Math. Soc., 1963, 13(3): 743–768.

    Article  MATH  MathSciNet  Google Scholar 

  39. Jin Y, Huang J, Tong R. Remeshing-assisted optimization for locally injective mappings. Computer Graphics Forum, 2014, 33(5): 269–279.

    Article  Google Scholar 

  40. Lipman Y. Bounded distortion mapping spaces for triangular meshes. ACM Transactions on Graphics, 2012, 31(4): 108:1–108:13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo-Feng Tong.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant No. 61170141, the National High Technology Research and Development 863 Program of China under Grant No. 2013AA013903, the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant Agreement [612627]-“AniNex”, and the Zhejiang Provincal Natural Science Foundation of China under Grant No. LY13F020036.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Qian, GP., Zhao, JY. et al. Stretch-Minimizing Volumetric Parameterization. J. Comput. Sci. Technol. 30, 553–564 (2015). https://doi.org/10.1007/s11390-015-1545-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-015-1545-y

Keywords

Navigation