Skip to main content
Log in

Stroke Style Analysis for Painterly Rendering

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

We propose a novel method that automatically analyzes stroke-related artistic styles of paintings. A set of adaptive interfaces are also developed to connect the style analysis with existing painterly rendering systems, so that the specific artistic style of a template painting can be effectively transferred to the input photo with minimal effort. Different from conventional texture-synthesis based rendering techniques that focus mainly on texture features, this work extracts, analyzes and simulates high-level style features expressed by artists’ brush stroke techniques. Through experiments, user studies and comparisons with ground truth, we demonstrate that the proposed style-orientated painting framework can significantly reduce tedious parameter adjustment, and it allows amateur users to efficiently create desired artistic styles simply by specifying a template painting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertzmann A, Jacobs C E, Oliver N et al. Image analogies. In Proc. the 28th SIGGRAPH, Aug. 2001, pp.327-340.

  2. Wang B, Wang W, Yang H et al. Efficient example-based painting and synthesis of 2D directional texture. IEEE Trans. Visualization and Computer Graphics, 2004, 10(3): 266-277.

    Article  Google Scholar 

  3. Lee H, Seo S, Ryoo S, Yoon K. Directional texture transfer. In Proc. the 8th Int. Symp. Non-Photorealistic Animation and Rendering, June 2010, pp.43-48.

  4. Litwinowicz P. Processing images and video for an impres- sionist effect. In Proc. the 24th SIGGRAPH, Aug. 1997, pp.407-414.

  5. Hertzmann A. Painterly rendering with curved brush strokes of multiple sizes. In Proc. the 25th SIGGRAPH, Aug 1998, pp.453-460.

  6. Hays J, Essa I. Image and video based painterly animation. In Proc. the 3rd Int. Symp. Non-Photorealistic Animation and Rendering, June 2004, pp.113-120.

  7. Kagaya M, Brendel W, Deng Q Q et al. Video painting with space-time-varying style parameters. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(1): 74-87.

    Article  Google Scholar 

  8. Huang H, Zhang L, Fu T N. Video painting via motion layer manipulation. Computer Graphics Forum, 2010, 29(7): 2055-2064.

    Article  Google Scholar 

  9. Lee H, Lee C H, Yoon K. Motion based painterly rendering. Computer Graphics Forum, 2009, 28(4): 1207-1215.

    Article  Google Scholar 

  10. Zeng K, Zhao M, Xiong C, Zhu S C. From image parsing to painterly rendering. ACM Transactions on Graphics (TOG), 2009, 29(1): Article No. 2.

  11. Lyu S, Rockmore D, Farid H. A digital technique for art au- thentication. In Proc. the National Academy of Sciences of the United States of America, 2004, 101(49): 17006-17010.

  12. Li J, Wang J Z. Studying digital imagery of ancient paint- ings by mixtures of stochastic models. IEEE Transactions on Image Processing, 2004, 13(3): 340-353.

    Article  Google Scholar 

  13. Yelizaveta M, Chua T S, Ramesh J. Semi-supervised anno- tation of brushwork in paintings domain using serial combi- nations of multiple experts. In Proc. the 14th Annual ACM Int. Conf. Multimedia, Oct. 2006, pp.529-538.

  14. Hertzmann A. Fast paint texture. In Proc. the 2nd Inter- national Symposium on Non-Photorealistic Animation and Rendering, June 2002, pp.91-96.

  15. Kalogerakis E, Nowrouzezahrai D, Breslav S, Hertzmann A. Learning hatching for pen-and-ink illustration of surfaces. ACM Transactions on Graphics (TOG), 2012, 31(1): 1-10.

    Article  Google Scholar 

  16. Melzer T, Kammerer P, Zolda E. Stroke detection of brush strokes in portrait miniatures using a semi-parametric and a model based approach. In Proc. the 14th International Conference on Pattern Recognition, Aug. 1998, pp.474-476.

  17. Johnson C R, Hendriks E, Berezhnoy I J et al. Image pro- cessing for artist identification. IEEE Signal Processing Magazine, 2008, 25(4): 37-48.

    Article  Google Scholar 

  18. Gabor D. A new microscopic principle. Nature, 1948, 161(4098): 777-778.

    Article  Google Scholar 

  19. Turner M R. Texture discrimination by Gabor functions. Bi- ological Cybernetics, 1986, 55(2/3): 71-82.

    Google Scholar 

  20. Fogel I, Sagi D. Gabor filters as texture discriminator. Bio- logical Cybernetics, 1989, 61(2): 103-113.

    Article  Google Scholar 

  21. Jain A K, Farrokhnia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 1991, 24(12): 1167-1186.

    Article  Google Scholar 

  22. Daugman J G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two- dimensional visual cortical filters. Journal of the Optical So- ciety of America A, 1985, 2(7): 1160-1169.

    Article  Google Scholar 

  23. Kruizinga P, Petkov N. Nonlinear operator for oriented tex- ture. IEEE Transactions on Image Processing, 1999, 8(10): 1395-1407.

    Article  MathSciNet  Google Scholar 

  24. Huang H, Fu T N, Li C F. Painterly rendering with content- dependent natural paint strokes. The Visual Computer, 2011, 27(9): 861-871.

    Article  Google Scholar 

  25. Huang H, Zang Y, Li C F. Example-based painting guided by color features. The Visual Computer, 2010, 26(6/8): 933-942.

    Article  Google Scholar 

  26. Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3): 273-297.

    MATH  Google Scholar 

  27. Comaniciu D, Meer P. Mean shift: A robust approach to- ward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.

    Article  Google Scholar 

  28. Tsai W H. Moment-preserving thresholding: A new approach. Computer Vision, Graphics and Image Processing, 1985, 29(3): 377-393.

    Article  Google Scholar 

  29. Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H. The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis. Proc. the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-91.

    Article  MathSciNet  MATH  Google Scholar 

  30. Gao Y, Li C F, Ren Bo, Hu S M. View-dependent multiscale fluid simulation. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(2): 178-188.

    Article  Google Scholar 

  31. Tang Y, Shi X Y, Xiao T Z, Fan J. An improved image analogy method based on adaptive CUDA-accelerated neigh- borhood matching framework. The Visual Computer, 2012, 28(6): 743-753.

    Article  Google Scholar 

  32. Li X Y, Gu Y, Hu S M, Martin R. Mixed-domain edge-aware image manipulation. IEEE Transactions on Image Processing, 2013, 22(5): 1915-1925.

    Article  MathSciNet  Google Scholar 

  33. Zhang S H, Li X Y, Hu S M, Martin R. Online video stream abstraction and stylization. IEEE Transactions on Multimedia, 2011, 13(6): 1286-1294.

    Article  Google Scholar 

  34. Wang X H, Jia J, Liao H Y, Cai L H. Affective image colorization. Journal of Computer Science and Technology, 2012, 27(6): 1119-1128.

    Article  Google Scholar 

  35. Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Processing, 2004, 13(4): 600-612.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Huang.

Additional information

This work is supported by Fok Ying-Tong Education Foundation of China under Grant No. 131065 and the International Joint Project from the Royal Society of UK under Grant No. JP100987.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zang, Y., Huang, H. & Li, CF. Stroke Style Analysis for Painterly Rendering. J. Comput. Sci. Technol. 28, 762–775 (2013). https://doi.org/10.1007/s11390-013-1375-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-013-1375-8

Keywords

Navigation