Skip to main content
Log in

A Dimensionality Reduction Framework for Detection of Multiscale Structure in Heterogeneous Networks

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Graph clustering has been widely applied in exploring regularities emerging in relational data. Recently, the rapid development of network theory correlates graph clustering with the detection of community structure, a common and important topological characteristic of networks. Most existing methods investigate the community structure at a single topological scale. However, as shown by empirical studies, the community structure of real world networks often exhibits multiple topological descriptions, corresponding to the clustering at different resolutions. Furthermore, the detection of multiscale community structure is heavily affected by the heterogeneous distribution of node degree. It is very challenging to detect multiscale community structure in heterogeneous networks. In this paper, we propose a novel, unified framework for detecting community structure from the perspective of dimensionality reduction. Based on the framework, we first prove that the well-known Laplacian matrix for network partition and the widely-used modularity matrix for community detection are two kinds of covariance matrices used in dimensionality reduction. We then propose a novel method to detect communities at multiple topological scales within our framework. We further show that existing algorithms fail to deal with heterogeneous node degrees. We develop a novel method to handle heterogeneity of networks by introducing a rescaling transformation into the covariance matrices in our framework. Extensive tests on real world and artificial networks demonstrate that the proposed correlation matrices significantly outperform Laplacian and modularity matrices in terms of their ability to identify multiscale community structure in heterogeneous networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman M E J. The structure and function of complex networks. SIAM Rev., 2003, 45(2): 167–256.

    Article  MathSciNet  MATH  Google Scholar 

  2. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. Complex networks: Structure and dynamics. Phys. Rep., 2006, 424: 175–308.

    Article  MathSciNet  Google Scholar 

  3. Flake G W, Lawrence S, Giles C L, Coetzee F M. Self-organization and identification of Web communities. Computer, 2002, 35(3): 66–71.

    Article  Google Scholar 

  4. Cheng X Q, Ren F X, Zhou S, Hu M B. Triangular clustering in document networks. New J. Phys., 2009, 11(3): 033019.

    Article  Google Scholar 

  5. Cheng X Q, Ren F X, Shen H W, Zhang Z K, Zhou T. Bridgeness: A local index on edge significance in maintaining global connectivity. J. Stat. Mech., 2010, P10011.

  6. Guimerà R, Amaral L A N. Functional cartography of complex metabolic networks. Nature, 2005, 433: 895–900.

    Article  Google Scholar 

  7. Girvan M, Newman M E J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A., 2002, 99(12): 7821–7826.

    Article  MathSciNet  MATH  Google Scholar 

  8. Arenas A, Díaz-Guilera A, Pérez-Vicente C J. Synchronization reveals topological scales in complex networks. Phys. Rev. Lett., 2006, 96(11): 114102.

    Article  Google Scholar 

  9. Lambiotte R, Delvenne J C, Barahona M. Laplacian dynamics and multiscale modular structure in networks. e-print arXiv: 0812.1770, 2008.

  10. Cheng X Q, Shen H W. Uncovering the community structure associated with the di®usion dynamics on networks. J. Stat. Mech., 2010, P04024.

  11. Newman M E J, Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E, 2004, 69(2): 026113.

    Article  Google Scholar 

  12. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. U.S.A., 2004, 101(9): 2658–2663.

    Article  Google Scholar 

  13. Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435: 814–818.

    Article  Google Scholar 

  14. Duch J, Arenas A. Community detection in complex networks using extremal optimization. Phys. Rev. E, 2005, 72(2): 027104.

    Article  Google Scholar 

  15. Newman M E J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A., 2006, 103(23): 8577–8582.

    Article  Google Scholar 

  16. Newman M E J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 2006, 74(3): 036104.

    Article  MathSciNet  Google Scholar 

  17. Yang B, Cheung W K, Liu J M. Community mining from signed social networks. IEEE Trans. Knowl. Data Eng., 2007, 19(10): 1333–1348.

    Article  Google Scholar 

  18. Rosvall M, Bergstrom C T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(4): 1118–1123.

    Article  Google Scholar 

  19. Bagrow J P. Evaluating local community methods in networks. J. Stat. Mech., 2008, P05001.

  20. Leskovec J, Lang K J, Dasgupta A, Mahoney M W. Statistical properties of community structure in large social and information networks. In Proc. the 17th Int. Conf. World Wide Web, April 2008, pp.695–704.

  21. Shen H W, Cheng X Q, Cai K, Hu M B. Detect overlapping and hierarchical community structure in networks. Physica A, 2009, 388(8): 1706–1712.

    Article  Google Scholar 

  22. Shen H W, Cheng X Q, Guo J F. Quantifying and identifying the overlapping community structure in networks. J. Stat. Mech., 2009, P07042.

  23. Shen H W, Cheng X Q. Spectral methods for the detection of network community structure: A comparative analysis. J. Stat. Mech., 2010, P10020.

  24. Chen D B, Shang M S, Lv Z H, Fu Y. Detecting overlapping communities of weighted networks via a local algorithm. Physica A, 2010, 389(19): 4177–4187.

    Article  Google Scholar 

  25. Shen H W, Cheng X Q, Guo J F. Exploring the structural regularities in networks. Phys. Rev. E, 2011, 84(5): 056111.

    Article  Google Scholar 

  26. Danon L, Díaz-Guilera A, Duch J, Arenas A. Comparing community structure identification. J. Stat. Mech., 2005, P09008.

  27. Fortunato S. Community detection in graphs. Phys. Rep., 2010, 486(3-5): 75–174.

    Article  MathSciNet  Google Scholar 

  28. Leskovec J, Lang K J, Mahoney M W. Empirical comparison of algorithms for network community detection. In Proc. the 19th Int. Conf. World Wide Web, April 2010, pp.631–640.

  29. Fortunato S, Barthélemy M. Resolution limit in community detection. Proc. Natl. Acad. Sci. U.S.A., 2007, 104(1): 36–41.

    Article  Google Scholar 

  30. Arenas A, Fernández A, Gómez S. Analysis of the structure of complex networks at different resolution levels. New J. Phys., 2008, 10(5): 053039.

    Article  Google Scholar 

  31. Ronhovde P, Nussinov Z. Multiresolution community detection for megascale networks by information-based replica correlations. Phys. Rev. E, 2009, 80(1): 016109.

    Article  Google Scholar 

  32. Delvenne J C, Yaliraki S N, Barahona M. Stability of graph communities across time scales. Proc. Natl. Acad. Sci. U.S.A., 2010, 107(29): 12755–12760.

    Article  Google Scholar 

  33. Mucha P J, Richardson T, Macon K, Porter M A, Onnela J P. Community structure in time-dependent, multiscale, and multiplex networks. Science, 2010, 328(5980): 876–878.

    Article  MathSciNet  MATH  Google Scholar 

  34. Ahn Y Y, Bagrow J P, Lehmann S. Link communities reveal multiscale complexity in networks. Nature, 2010, 466: 761–764.

    Article  Google Scholar 

  35. Arenas A, Borge-Holthoefer J, Gómez S, Zamora-López G. Optimal map of the modular structure of complex networks. New J. Phys., 2010, 12(5): 053009.

    Article  Google Scholar 

  36. Shen H W, Cheng X Q, Fang B X. Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E, 2010, 82(1): 016114.

    Article  Google Scholar 

  37. Jolliffe I T. Principal Component Analysis. 2nd edition, Springer, NY, 2002.

  38. von Luxburg U. A tutorial on spectral clustering. Stat. Comput., 2007, 17(4): 395–416.

    Article  MathSciNet  Google Scholar 

  39. Fiedler M. Property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J., 1975, 25(4): 619–633.

    MathSciNet  Google Scholar 

  40. Chung F R K. Spectral Graph Theory. Amer. Math. Soc., 1997.

  41. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 2000, 8(8): 888–905.

    Google Scholar 

  42. Ding C H Q, He X, Zha H, Gu M, Simon H D. A Min-max cut algorithm for graph partitioning and data clustering. In Proc. IEEE Int. Conf. Data Mining, Nov.29-Dec.2, 2001, pp.107–114.

  43. Scott J. Social Network Analysis: A Handbook, 2nd edition. Sage Publications, 2000.

  44. Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikoloski Z, Wagner D. On modularity clustering. IEEE Trans. Knowl. Data Eng., 2008, 30(2): 172–188.

    Article  Google Scholar 

  45. Newman M E J. Fast algorithm for detecting community structure in networks. Phys. Rev. E, 2004, 69(6): 066133.

    Article  Google Scholar 

  46. Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mech., 2008, 10: P10008.

    Article  Google Scholar 

  47. Agarwal G, Kempe D. Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B, 2008, 66(3): 409–418.

    Article  MathSciNet  MATH  Google Scholar 

  48. Zachary W W. An information flow model for conflict and fission in small groups. J. Anthropol. Res., 1977, 33: 452–473.

    Google Scholar 

  49. Newman M E J. Assortative mixing in networks. Phys. Rev. Lett., 2002, 89(20): 208701.

    Article  Google Scholar 

  50. Chauhan S, Girvan M, Ott E. Spectral properties of networks with community structure. Phys. Rev. E, 2009, 80(5): 056114.

    Article  Google Scholar 

  51. Capocci C, Servedio V D P, Caldarelli G, Colaiori F. Detecting communities in large networks. Physica A, 2005, 352(2-4): 669–676.

    Article  Google Scholar 

  52. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms. Phys. Rev. E, 2008, 78(4): 046110.

    Article  Google Scholar 

  53. Rosvall M, Bergstrom C T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. U.S.A., 2007, 104(18): 7327–7331.

    Article  Google Scholar 

  54. Muff S, Rao F, Caflisch A. Local modularity measure for network clusterizations. Phys. Rev. E, 2005, 72(5): 056107.

    Article  Google Scholar 

  55. Gleiser P, Danon L. Community structure in jazz. Adv. Complex Syst., 2003, 6(4): 565–573.

    Article  Google Scholar 

  56. Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A. Self-similar community structure in a network of human interactions. Phys. Rev. E, 2003, 68(6): 065103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Wei Shen.

Additional information

This work was funded by the National Natural Science Foundation of China under Grant Nos. 60873245, 60933005, 60873243, 60903139 and 60803123. This work was also partly funded by the National High Technology Research and Development 863 Program of China under Grant No. 2010AA012503, and the Beijing Natural Science Foundation under Grant No. 4122077.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 76.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, HW., Cheng, XQ., Wang, YZ. et al. A Dimensionality Reduction Framework for Detection of Multiscale Structure in Heterogeneous Networks. J. Comput. Sci. Technol. 27, 341–357 (2012). https://doi.org/10.1007/s11390-012-1227-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-012-1227-y

Keywords

Navigation