Advertisement

Detecting Communities in K-Partite K-Uniform (Hyper)Networks

  • Xin LiuEmail author
  • Tsuyoshi Murata
Article

Abstract

In social tagging systems such as Delicious and Flickr, users collaboratively manage tags to annotate resources. Naturally, a social tagging system can be modeled as a (user, tag, resource) hypernetwork, where there are three different types of nodes, namely users, resources and tags, and each hyperedge has three end nodes, connecting a user, a resource and a tag that the user employs to annotate the resource. Then how can we automatically cluster related users, resources and tags, respectively? This is a problem of community detection in a 3-partite, 3-uniform hypernetwork. More generally, given a K-partite K-uniform (hyper)network, where each (hyper)edge is a K-tuple composed of nodes of K different types, how can we automatically detect communities for nodes of different types? In this paper, by turning this problem into a problem of finding an efficient compression of the (hyper)network's structure, we propose a quality function for measuring the goodness of partitions of a K-partite K-uniform (hyper)network into communities, and develop a fast community detection method based on optimization. Our method overcomes the limitations of state of the art techniques and has several desired properties such as comprehensive, parameter-free, and scalable. We compare our method with existing methods in both synthetic and real-world datasets.

Keywords

community detection bipartite graph tripartite hypergraph clustering social tagging 

Supplementary material

11390_2011_177_MOESM1_ESM.pdf (78 kb)
(PDF 78 KB)

References

  1. [1]
    Fortunato S. Community detection in graphs. Physics Reports, 2010, 486: 75–174.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Danon L, Duch L, Guilera A D, Arenas A. Comparing community structure identification. J. Stat. Mech, 2005, 9: P09008.CrossRefGoogle Scholar
  3. [3]
    Lancichinetti A, Fortunato S. Community detection algorithms: A comparative analysis. Phys. Rev. E, 2009, 80(5): 056117.CrossRefGoogle Scholar
  4. [4]
    Leskovec J, Lang K J, Mahoney M W. Empirical comparison of algorithms for network community detection. In Proc. the 19th International Conference on World Wide Web, Raleigh, USA, Apr. 26–30, 2010, pp.631-640.Google Scholar
  5. [5]
    Shen H, Cheng X. Spectral methods for the detection of network community structure: A comparative analysis. J. Stat. Mech., 2010, 10: P10020.CrossRefGoogle Scholar
  6. [6]
    Guimerà R, Pardo M S, Amaral L A N. Module identification in bipartite and directed networks. Phys. Rev. E, 2007, 76(3): 036102.CrossRefGoogle Scholar
  7. [7]
    Zlatić V, Ghoshal G, Caldarelli G. Hypergraph topological quantities for tagged social networks. Phys. Rev. E, 2009, 80(3): 036118.CrossRefGoogle Scholar
  8. [8]
    Neubauer N, Obermayer K. Towards community detection in k-partite k-uniform hypergraphs. In Workshop on Analyzing Networks and Learning with Graphs, Whistler, BC, Canada, Dec. 11, 2009.Google Scholar
  9. [9]
    Lu C, Chen X, Park E K. Exploit the tripartite network of social tagging for web clustering. In Proc. the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, Nov. 2–6, 2009, pp.1545-1548.Google Scholar
  10. [10]
    Zhou T, Ren J, Medo M, Zhang Y C. Bipartite network projection and personal recommendation. Phys. Rev. E, 2007, 76(4): 046115.CrossRefGoogle Scholar
  11. [11]
    Barber M J. Modularity and community detection in bipartite network. Phys. Rev. E, 2007, 76(6): 066102.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Murata T, Ikeya T. A new modularity for detecting one-to-many correspondence of communities in bipartite networks. Advances in Complex Systems, 2010, 13(1): 19–31.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Suzuki K,Wakita K. Extracting multi-facet community structure from bipartite networks. In Proc. International Conference on Computational Science and Engineering, Vancouver, BC, Canada, Aug. 29–31, 2009, pp.312-319.Google Scholar
  14. [14]
    Murata T. Detecting communities from tripartite networks. In Proc. the 19th International Conference on World Wide Web, Raleigh, USA, Apr. 26–30, 2010, pp.1159-1160.Google Scholar
  15. [15]
    Murata T. Modularity for heterogeneous networks. In Proc. the 21st ACM Conference on Hypertext and Hypermedia, Toronto, Canada, Jun. 13–16, 2010, pp.129-134.Google Scholar
  16. [16]
    Lin Y R, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A. Metafac: Community discovery via relational hypergraph factorization. In Proc. the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, Jun. 28-Jul. 1, 2009, pp.527-535.Google Scholar
  17. [17]
    Dhillon I S, Mallela S, Modha D S. Information-theoretic co-clustering. In Proc. the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Washington DC, USA, Aug. 24–27, 2003, pp.89-98.Google Scholar
  18. [18]
    Li T. A general model for clustering binary data. In Proc. the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, Aug. 21–24, 2005, pp.188-197.Google Scholar
  19. [19]
    Banerjee A, Dhillon I, Ghosh J, Merugu S, Modha D S. A generalized maximum entropy approach to Bregman co-clustering and matrix approximation. Journal of Machine Learning Research, 2007, 8: 1919–1986.MathSciNetGoogle Scholar
  20. [20]
    Long B, Zhang Z, Yu P S. A probabilistic framework for relational clustering. In Proc. the 13th ACM International Conference on Knowledge Discovery and Data Mining, San Jose, USA, Aug. 12–15, 2007, pp.470-479.Google Scholar
  21. [21]
    Newman M E J. Networks: An Introduction. New York: Oxford University Press, 2010.zbMATHGoogle Scholar
  22. [22]
    Rosvall M, Bergstrom C T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA, 2007, 104(18): 7327–7331.CrossRefGoogle Scholar
  23. [23]
    Kernighan B, Lin S. An efficient heuristic procedure to partition graphs. Bell Syst. Tech. J., 1970, 49(2): 291–307.zbMATHGoogle Scholar
  24. [24]
    Scott J. Social Network Analysis: A Handbook. Second Edition, Sage Publications, Newberry Park, CA, 2000.Google Scholar
  25. [25]
    Newman M E J, Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E, 2004, 69(2): 026113.CrossRefGoogle Scholar
  26. [26]
    Newman M E J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 2006, 103(23): 8577–8582.CrossRefGoogle Scholar
  27. [27]
    Fortunato S, Barthélemy M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA, 2007, 104(1): 36–41.CrossRefGoogle Scholar
  28. [28]
    Shen H, Cheng X, Fang B. Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E, 2010, 82(1): 016114.CrossRefGoogle Scholar
  29. [29]
    Newman M E J. Fast algorithm for detecting community structure in networks. Phys. Rev. E, 2004, 69(6): 066133.CrossRefGoogle Scholar
  30. [30]
    Clauset A, Newman M E J, Moore C. Finding community structure in very large networks. Phys. Rev. E, 2004, 70(6): 066111.CrossRefGoogle Scholar
  31. [31]
    Duch L, Arenas A. Community detection in complex networks using extremal optimization. Phys. Rev. E, 2005, 72(2): 027104.CrossRefGoogle Scholar
  32. [32]
    Medus A, Acuna G, Dorso C O. Detection of community structures in networks via global optimization. Physica A, 2005, 358(2–4): 593–604.CrossRefGoogle Scholar
  33. [33]
    Newman M E J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 2006, 74(3): 036104.MathSciNetCrossRefGoogle Scholar
  34. [34]
    Schuetz P, Caflisch A. Efficient modularity optimization by multistep greedy algorithm and vertex refinement. Phys. Rev. E, 2008, 77(4): 046112.CrossRefGoogle Scholar
  35. [35]
    Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mech., 2008, 10: P10008.CrossRefGoogle Scholar
  36. [36]
    Zhang X S, Wang R S, Wang Y, Wang J, Qiu Y, Wang L, Chen L. Modularity optimization in community detection of complex networks. Europhys. Lett., 2009, 87(3): 38002.CrossRefGoogle Scholar
  37. [37]
    Liu X, Murata T. Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A, 2010, 389(7): 1493–1500.CrossRefGoogle Scholar
  38. [38]
    Gao B, Liu T Y, Zheng X, Cheng Q S, Ma W Y. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In Proc. the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, Aug. 21–24, 2005, pp.41-50.Google Scholar
  39. [39]
    Greco G, Guzzo A, Pontieri L. An information-theoretic framework for high-order co-clustering of heterogeneous objects. In Proc. the 15th Italian Symposium on Advanced Database Systems, Torre Canne, Italy, Jun. 17–20, 2007, pp.397-404.Google Scholar
  40. [40]
    Long B, Zhang Z F, Wu X Y, Yu P S. Spectral clustering for multi-type relational data. In Proc. the 23 rd International Conference on Machine Learning, Pittsburgh, USA, Jun. 25–29, 2006, pp.585-592.Google Scholar
  41. [41]
    Long B, Wu X, Zhang Z, Yu P S. Unsupervised learning on k-partite graphs. In Proc. the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, Aug. 20–23, 2006, pp.317-326.Google Scholar
  42. [42]
    Singh A P, Gordon G J. Relational learning via collective matrix factorization. In Proc. the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.650–658, Las Vegas, USA, Aug. 24–27, 2008.Google Scholar
  43. [43]
    Singh A P, Gordon G J. A unified view of matrix factorization models. In Proc. the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium, Sept. 15–19, 2008, pp.358-373.Google Scholar
  44. [44]
    Cattuto C, Schmitz C, Baldassarri A, Servedio V D P, Loreto V, Hotho A, Grahl M, Stumme G. Network properties of folksonomies. AI Communications, 2007, 20(4): 245–262.MathSciNetGoogle Scholar
  45. [45]
    Halpin H, Robu V, Shepherd H. The complex dynamics of collaborative tagging. In Proc. the 16th International Conference on World Wide Web, Banff, Canada, May 8–12, 2007, pp.211-220.Google Scholar
  46. [46]
    Long B, Wu X, Zhang Z, Yu P S. Community learning by graph approximation. In Proc. the 7th IEEE International Conference on Data Mining, Omaha, USA, Oct. 28–31, 2007, pp.232-241.Google Scholar
  47. [47]
    Long B, Zhang Z, Yu P S, Xu T. Clustering on complex graphs. In Proc. the 23 rd National Conference on Artificial Intelligence, Chicago, USA, Jul. 13–17, 2008, pp.659-664.Google Scholar
  48. [48]
    Rissanen J. Modelling by shortest data description. Automatica, 1978, 14(5): 465–471.zbMATHCrossRefGoogle Scholar
  49. [49]
    Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikolski Z, Wagner D. On modularity-np-completeness and beyond. Technical Report 2006–19, ITI Wagner, Faculty of Informatics, Universität Karlsruhe, 2006.Google Scholar
  50. [50]
    Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E, 2007, 76(3): 036106.CrossRefGoogle Scholar
  51. [51]
    Barber M J, Clark J W. Detecting network communities by propagating labels under constraints. Phys. Rev. E, 2009, 80(2): 026129.CrossRefGoogle Scholar
  52. [52]
    Arenas A, Duch J, Fernández A, Gómez S. Size reduction of complex networks preserving modularity. New Journal of Physics, 2007, 9: 176.CrossRefGoogle Scholar
  53. [53]
    Davis A, Gardner B B, Gardner M R. Deep South. Chicago: University of Chicago Press, IL, 1941.Google Scholar
  54. [54]
    Breiger R, Carley K, Pattison P (eds.) Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, Washington, DC: The National Academics Press, USA, 2003.Google Scholar
  55. [55]
    Jaccard P. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat., 1901, 37: 547–579.Google Scholar
  56. [56]
    Lü L, Zhou T. Link prediction in complex networks: A survey. Physica A, 2011, 390: 1150–1170.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC & Science Press, China 2011

Authors and Affiliations

  1. 1.Department of Computer Science, Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations