Skip to main content
Log in

Detecting Communities in K-Partite K-Uniform (Hyper)Networks

  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In social tagging systems such as Delicious and Flickr, users collaboratively manage tags to annotate resources. Naturally, a social tagging system can be modeled as a (user, tag, resource) hypernetwork, where there are three different types of nodes, namely users, resources and tags, and each hyperedge has three end nodes, connecting a user, a resource and a tag that the user employs to annotate the resource. Then how can we automatically cluster related users, resources and tags, respectively? This is a problem of community detection in a 3-partite, 3-uniform hypernetwork. More generally, given a K-partite K-uniform (hyper)network, where each (hyper)edge is a K-tuple composed of nodes of K different types, how can we automatically detect communities for nodes of different types? In this paper, by turning this problem into a problem of finding an efficient compression of the (hyper)network's structure, we propose a quality function for measuring the goodness of partitions of a K-partite K-uniform (hyper)network into communities, and develop a fast community detection method based on optimization. Our method overcomes the limitations of state of the art techniques and has several desired properties such as comprehensive, parameter-free, and scalable. We compare our method with existing methods in both synthetic and real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fortunato S. Community detection in graphs. Physics Reports, 2010, 486: 75–174.

    Article  MathSciNet  Google Scholar 

  2. Danon L, Duch L, Guilera A D, Arenas A. Comparing community structure identification. J. Stat. Mech, 2005, 9: P09008.

    Article  Google Scholar 

  3. Lancichinetti A, Fortunato S. Community detection algorithms: A comparative analysis. Phys. Rev. E, 2009, 80(5): 056117.

    Article  Google Scholar 

  4. Leskovec J, Lang K J, Mahoney M W. Empirical comparison of algorithms for network community detection. In Proc. the 19th International Conference on World Wide Web, Raleigh, USA, Apr. 26–30, 2010, pp.631-640.

  5. Shen H, Cheng X. Spectral methods for the detection of network community structure: A comparative analysis. J. Stat. Mech., 2010, 10: P10020.

    Article  Google Scholar 

  6. Guimerà R, Pardo M S, Amaral L A N. Module identification in bipartite and directed networks. Phys. Rev. E, 2007, 76(3): 036102.

    Article  Google Scholar 

  7. Zlatić V, Ghoshal G, Caldarelli G. Hypergraph topological quantities for tagged social networks. Phys. Rev. E, 2009, 80(3): 036118.

    Article  Google Scholar 

  8. Neubauer N, Obermayer K. Towards community detection in k-partite k-uniform hypergraphs. In Workshop on Analyzing Networks and Learning with Graphs, Whistler, BC, Canada, Dec. 11, 2009.

  9. Lu C, Chen X, Park E K. Exploit the tripartite network of social tagging for web clustering. In Proc. the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, Nov. 2–6, 2009, pp.1545-1548.

  10. Zhou T, Ren J, Medo M, Zhang Y C. Bipartite network projection and personal recommendation. Phys. Rev. E, 2007, 76(4): 046115.

    Article  Google Scholar 

  11. Barber M J. Modularity and community detection in bipartite network. Phys. Rev. E, 2007, 76(6): 066102.

    Article  MathSciNet  Google Scholar 

  12. Murata T, Ikeya T. A new modularity for detecting one-to-many correspondence of communities in bipartite networks. Advances in Complex Systems, 2010, 13(1): 19–31.

    Article  MathSciNet  MATH  Google Scholar 

  13. Suzuki K,Wakita K. Extracting multi-facet community structure from bipartite networks. In Proc. International Conference on Computational Science and Engineering, Vancouver, BC, Canada, Aug. 29–31, 2009, pp.312-319.

  14. Murata T. Detecting communities from tripartite networks. In Proc. the 19th International Conference on World Wide Web, Raleigh, USA, Apr. 26–30, 2010, pp.1159-1160.

  15. Murata T. Modularity for heterogeneous networks. In Proc. the 21st ACM Conference on Hypertext and Hypermedia, Toronto, Canada, Jun. 13–16, 2010, pp.129-134.

  16. Lin Y R, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A. Metafac: Community discovery via relational hypergraph factorization. In Proc. the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, Jun. 28-Jul. 1, 2009, pp.527-535.

  17. Dhillon I S, Mallela S, Modha D S. Information-theoretic co-clustering. In Proc. the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Washington DC, USA, Aug. 24–27, 2003, pp.89-98.

  18. Li T. A general model for clustering binary data. In Proc. the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, Aug. 21–24, 2005, pp.188-197.

  19. Banerjee A, Dhillon I, Ghosh J, Merugu S, Modha D S. A generalized maximum entropy approach to Bregman co-clustering and matrix approximation. Journal of Machine Learning Research, 2007, 8: 1919–1986.

    MathSciNet  Google Scholar 

  20. Long B, Zhang Z, Yu P S. A probabilistic framework for relational clustering. In Proc. the 13th ACM International Conference on Knowledge Discovery and Data Mining, San Jose, USA, Aug. 12–15, 2007, pp.470-479.

  21. Newman M E J. Networks: An Introduction. New York: Oxford University Press, 2010.

    MATH  Google Scholar 

  22. Rosvall M, Bergstrom C T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA, 2007, 104(18): 7327–7331.

    Article  Google Scholar 

  23. Kernighan B, Lin S. An efficient heuristic procedure to partition graphs. Bell Syst. Tech. J., 1970, 49(2): 291–307.

    MATH  Google Scholar 

  24. Scott J. Social Network Analysis: A Handbook. Second Edition, Sage Publications, Newberry Park, CA, 2000.

    Google Scholar 

  25. Newman M E J, Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E, 2004, 69(2): 026113.

    Article  Google Scholar 

  26. Newman M E J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 2006, 103(23): 8577–8582.

    Article  Google Scholar 

  27. Fortunato S, Barthélemy M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA, 2007, 104(1): 36–41.

    Article  Google Scholar 

  28. Shen H, Cheng X, Fang B. Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E, 2010, 82(1): 016114.

    Article  Google Scholar 

  29. Newman M E J. Fast algorithm for detecting community structure in networks. Phys. Rev. E, 2004, 69(6): 066133.

    Article  Google Scholar 

  30. Clauset A, Newman M E J, Moore C. Finding community structure in very large networks. Phys. Rev. E, 2004, 70(6): 066111.

    Article  Google Scholar 

  31. Duch L, Arenas A. Community detection in complex networks using extremal optimization. Phys. Rev. E, 2005, 72(2): 027104.

    Article  Google Scholar 

  32. Medus A, Acuna G, Dorso C O. Detection of community structures in networks via global optimization. Physica A, 2005, 358(2–4): 593–604.

    Article  Google Scholar 

  33. Newman M E J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 2006, 74(3): 036104.

    Article  MathSciNet  Google Scholar 

  34. Schuetz P, Caflisch A. Efficient modularity optimization by multistep greedy algorithm and vertex refinement. Phys. Rev. E, 2008, 77(4): 046112.

    Article  Google Scholar 

  35. Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mech., 2008, 10: P10008.

    Article  Google Scholar 

  36. Zhang X S, Wang R S, Wang Y, Wang J, Qiu Y, Wang L, Chen L. Modularity optimization in community detection of complex networks. Europhys. Lett., 2009, 87(3): 38002.

    Article  Google Scholar 

  37. Liu X, Murata T. Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A, 2010, 389(7): 1493–1500.

    Article  Google Scholar 

  38. Gao B, Liu T Y, Zheng X, Cheng Q S, Ma W Y. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In Proc. the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, Aug. 21–24, 2005, pp.41-50.

  39. Greco G, Guzzo A, Pontieri L. An information-theoretic framework for high-order co-clustering of heterogeneous objects. In Proc. the 15th Italian Symposium on Advanced Database Systems, Torre Canne, Italy, Jun. 17–20, 2007, pp.397-404.

  40. Long B, Zhang Z F, Wu X Y, Yu P S. Spectral clustering for multi-type relational data. In Proc. the 23 rd International Conference on Machine Learning, Pittsburgh, USA, Jun. 25–29, 2006, pp.585-592.

  41. Long B, Wu X, Zhang Z, Yu P S. Unsupervised learning on k-partite graphs. In Proc. the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, Aug. 20–23, 2006, pp.317-326.

  42. Singh A P, Gordon G J. Relational learning via collective matrix factorization. In Proc. the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.650–658, Las Vegas, USA, Aug. 24–27, 2008.

  43. Singh A P, Gordon G J. A unified view of matrix factorization models. In Proc. the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Antwerp, Belgium, Sept. 15–19, 2008, pp.358-373.

  44. Cattuto C, Schmitz C, Baldassarri A, Servedio V D P, Loreto V, Hotho A, Grahl M, Stumme G. Network properties of folksonomies. AI Communications, 2007, 20(4): 245–262.

    MathSciNet  Google Scholar 

  45. Halpin H, Robu V, Shepherd H. The complex dynamics of collaborative tagging. In Proc. the 16th International Conference on World Wide Web, Banff, Canada, May 8–12, 2007, pp.211-220.

  46. Long B, Wu X, Zhang Z, Yu P S. Community learning by graph approximation. In Proc. the 7th IEEE International Conference on Data Mining, Omaha, USA, Oct. 28–31, 2007, pp.232-241.

  47. Long B, Zhang Z, Yu P S, Xu T. Clustering on complex graphs. In Proc. the 23 rd National Conference on Artificial Intelligence, Chicago, USA, Jul. 13–17, 2008, pp.659-664.

  48. Rissanen J. Modelling by shortest data description. Automatica, 1978, 14(5): 465–471.

    Article  MATH  Google Scholar 

  49. Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikolski Z, Wagner D. On modularity-np-completeness and beyond. Technical Report 2006–19, ITI Wagner, Faculty of Informatics, Universität Karlsruhe, 2006.

  50. Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E, 2007, 76(3): 036106.

    Article  Google Scholar 

  51. Barber M J, Clark J W. Detecting network communities by propagating labels under constraints. Phys. Rev. E, 2009, 80(2): 026129.

    Article  Google Scholar 

  52. Arenas A, Duch J, Fernández A, Gómez S. Size reduction of complex networks preserving modularity. New Journal of Physics, 2007, 9: 176.

    Article  Google Scholar 

  53. Davis A, Gardner B B, Gardner M R. Deep South. Chicago: University of Chicago Press, IL, 1941.

    Google Scholar 

  54. Breiger R, Carley K, Pattison P (eds.) Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, Washington, DC: The National Academics Press, USA, 2003.

  55. Jaccard P. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat., 1901, 37: 547–579.

    Google Scholar 

  56. Lü L, Zhou T. Link prediction in complex networks: A survey. Physica A, 2011, 390: 1150–1170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu.

Additional information

This work was supported in part by JSPS Grant-in-Aid under Grant No. 22300049 and IBM Ph.D. Fellowship.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 78 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Murata, T. Detecting Communities in K-Partite K-Uniform (Hyper)Networks. J. Comput. Sci. Technol. 26, 778–791 (2011). https://doi.org/10.1007/s11390-011-0177-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-011-0177-0

Keywords

Navigation