Tag-Aware Recommender Systems: A State-of-the-Art Survey

  • Zi-Ke ZhangEmail author
  • Tao Zhou
  • Yi-Cheng ZhangEmail author


In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related studies and future challenges of tag-aware recommendation algorithms.


social tagging systems tag-aware recommendation network-based/tensor-based/topic-based methods 

Supplementary material

11390_2011_176_MOESM1_ESM.pdf (75 kb)
(PDF 75 KB)


  1. [1]
    Zhang G Q, Zhang G Q, Yang Q F, Cheng S Q, Zhou T. Evolution of the Internet and its cores. New J. Phys., 2008, 10(12): 123027.CrossRefGoogle Scholar
  2. [2]
    Fensel D, Hendler J, Lieberman H. Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential. Cambridge, US, 2003.Google Scholar
  3. [3]
    Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst., 1998, 30(1–7): 107–117.CrossRefGoogle Scholar
  4. [4]
    Resnick P, Varian H R. Recommender systems. Commun. ACM, 1997, 40(3): 56.CrossRefGoogle Scholar
  5. [5]
    Schafer J B, Konstan J, Riedl J. E-commerce recommendation applications. IEEE Internet Comput., 2001, 5(1–2): 115–153.zbMATHGoogle Scholar
  6. [6]
    Linden G, Smith B, York J. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput., 2003, 7(1): 76–80.CrossRefGoogle Scholar
  7. [7]
    Bennett J, Lanning S. The netflix prize. In Proc. KDD Cup and Workshop, San Jose, USA, Aug. 12, 2007, pp.35-38.Google Scholar
  8. [8]
    Ali K, van Stam W. TiVo: Making show recommendations using a distributed collaborative filtering architecture. In Proc. 10th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., Las Vegas, USA, Aug. 24–27, 2008, pp.394-401.Google Scholar
  9. [9]
    Huang Z, Chen H, Zeng D. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst., 2004, 22(1): 116–142.CrossRefGoogle Scholar
  10. [10]
    Zhou T, Ren J, Medo M, Zhang Y C. Bipartite network projection and personal recommendation. Phys. Rev. E, 2007, 76(4): 046115.CrossRefGoogle Scholar
  11. [11]
    Herlocker J L, Konstan J A, Terveen L G, Riedl J T. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 2004, 22(1): 5–53.CrossRefGoogle Scholar
  12. [12]
    Resnick P, Kuwabara K, Zeckhauser R, Friedman E. Reputation systems. Commun. ACM, 2000, 43(12): 45–48.CrossRefGoogle Scholar
  13. [13]
    Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng., 2005, 17(6): 734–749.CrossRefGoogle Scholar
  14. [14]
    Kazienko P, Adamski M. AdROSA − Adaptive personalization of Web advertising. Info. Sci., 2007, 177(11): 2269–2295.CrossRefGoogle Scholar
  15. [15]
    Tso K, Schmidt-Thieme L. Attribute-aware collaborative filtering. In Proc. From Data and Information Analysis to Knowledge Engineering, Beijing, China, 2006, pp.614-621.Google Scholar
  16. [16]
    Pazzani M J, Billsus D. Content-Based Recommendation Systems. The Adaptive Web, Springer-Verlag, Berlin, 2007, pp.325-341.CrossRefGoogle Scholar
  17. [17]
    Albert R, Barabási A L. Statistical mechanics of complex networks. Rev. Mod. Phys., 2002, 74(1): 47–97.CrossRefzbMATHGoogle Scholar
  18. [18]
    Dorogovtsev S N, Mendes J F F. Evolution of networks. Adv. Phys., 2002, 51: 1079.CrossRefGoogle Scholar
  19. [19]
    Newman M E J. The structure and function of complex networks. SIAM Rev., 2003, 45(2): 167–256.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Boccaletti S, Latora V, Moreno Y, Chavez M, Huang D U. Complex networks: Structure and dynamics. Phys. Rep., 2006, 424(4/5): 175–308.MathSciNetCrossRefGoogle Scholar
  21. [21]
    Costa L da F, Rodrigues F A, Traviesor G, Boas P R U. Characterization of complex networks: A survey of measurements. Adv. Phys., 2007, 56(1): 167–242.CrossRefGoogle Scholar
  22. [22]
    Mathes A. Folksonomies-cooperative classification and communication through shared metadata. Computer Mediated Communication, 2004, LIS590CMC(10):Google Scholar
  23. [23]
    Cattuto C, Loreto V, Pietronero L. Semiotic dynamics and collaborative tagging. Proc. Natl. Acad. Sci. U.S.A., 2007, 104(5): 1461–1464.CrossRefGoogle Scholar
  24. [24]
    Cattuto C, Barrat A, Baldassarri A, Schehr G, Loreto V. Collective dynamics of social annotation. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(26): 10511–10515.Google Scholar
  25. [25]
    Zhang Z K, Lü L, Liu J G, Zhou T. Empirical analysis on a keyword-based semantic system. Eur. Phys. J. B, 2008, 66(4): 557–561.CrossRefzbMATHGoogle Scholar
  26. [26]
    Lü L, Zhang Z K, Zhou T. Zipf's law leads to heaps' law: Analyzing their relation in finite-size systems. PLoS ONE, 2010, 5(12): e14139.CrossRefGoogle Scholar
  27. [27]
    Sen S, Lam S K, Rashid A M, Cosley D, Frankowski D, Osterhouse J, Harper F M, Riedl J. Tagging, communities, vocabulary, evolution. In Proc. 20th Anniversary Conf. Computer Supported Cooperative Work, Bantt, Canada, Nov. 4–8, 2006, pp.181-190.Google Scholar
  28. [28]
    Nov O. What motivates wikipedians?. Commun. ACM, 2007, 50(11): 60–64.CrossRefGoogle Scholar
  29. [29]
    Ding Y, Jacob E K, Zhang Z, Foo S, Yan E, George N L, Guo L. Perspectives on social tagging. J. Am. Soc. Inf. Sci. Technol., 2009, 60(12): 2388–2401.CrossRefGoogle Scholar
  30. [30]
    Zhang Z K, Liu C, Zhang Y C, Zhou T. Solving the cold-start problem in recommender systems with social tags. EPL, 2010, 92(2): 28002.MathSciNetCrossRefGoogle Scholar
  31. [31]
    Hotho A, Jäschke R, Schmitz C, Stumme G. Information retrieval in folksonomies: Search and ranking. In Proc. ESWC, Budva, Montenegro, Jun. 11–14, 2006, pp.411-426.Google Scholar
  32. [32]
    Kleinberg J M. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999, 46(5): 604–632.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G. Tag recommendations in folksonomies. In Proc. PKDD2007, Warsaw, Poland, Sept. 17–21, 2007, pp.506-514.Google Scholar
  34. [34]
    Xu S, Bao S, Fei B et al. Exploring folksonomy for personalized search. In Proc. the 31st Annual Int. ACM SIGIR Conf. Res. Dev. Info. Retr., Singapore, Jul. 20–24, 2008, pp.155-162.Google Scholar
  35. [35]
    Bogers T. Recommender systems for social bookmarking [Ph.D. Dissertation]. Tilburg University, Dec. 2009.Google Scholar
  36. [36]
    Bischoff K, Firan C S, Nejdl W, Paiu R. Can all tags be used for search?. In Proc. 17th ACM Conf. Info. Knowl. Manag., Napa Valley, USA, Oct. 26–30, 2008, pp.193-202.Google Scholar
  37. [37]
    Wu H, Zubair M, Maly K. Harvesting social knowledge from folksonomies. In Proc. 7th Conf. Hypertext Hypermedia, Odense, Denmark, Aug. 22–25, 2006, pp.111-114.Google Scholar
  38. [38]
    Spiteri L. Structure and form of folksonomy tags: The road to the public library catalogue. Webology, June 2007, 4(2): 459–468.Google Scholar
  39. [39]
    Lee S S, Yong H S. Component based approach to handle synonym and polysemy in folksonomy. In Proc. Int. Conf. Computer and Information Technology, Aizu-Wakamatsu, Japan, Oct. 16–19, 2007, pp.200-205.Google Scholar
  40. [40]
    Shepitsen A, Gemmell J, Mobasher B, Burke R. Personalized recommendation in social tagging systems using hierarchical clustering. In Proc. the 2008 ACM Conf. Recomm. Syst., Lausanne, Switzerland, Oct. 23–25, 2008, pp.259-266.Google Scholar
  41. [41]
    Capocci A, Caldarelli G. Folksonomies and clustering in the collaborative system CiteULike. J. Phys. A, 2008, 41(22): 224016.MathSciNetCrossRefGoogle Scholar
  42. [42]
    Mika P. Ontologies are us: A unified model of social networks and semantics. Web Semantics: Science, Services and Agents on the World Wide Web, 2007, 5(1): 5–15.MathSciNetCrossRefGoogle Scholar
  43. [43]
    Kim H L, Scerri S, Breslin J G, Decker S, Kim H G. The state of the art in tag ontologies: A semantic model for tagging and folksonomies. In Proc. 2008 Int. Conf. Dublin Core Metadata Appl., Berlin, Germany, Sept. 22–26, 2008, pp.128-137.Google Scholar
  44. [44]
    Symeonidis P, Nanopoulos A, Manolopoulos Y. Tag recommendations based on tensor dimensionality reduction. In Proc. 2008 ACM Conf. Recomme. Syst., Lausanne, Switzerland, Oct. 23–25, 2008, pp.43-50.Google Scholar
  45. [45]
    Wetzker R, Umbrath W, Said A. A hybrid approach to item recommendation in folksonomies. In Proc. the Workshop Exploiting Semantic Annotation Information Retrieval (WSDM2009), Barcelona, Spain, Feb. 9–11, 2009, pp.25-29.Google Scholar
  46. [46]
    Zhang Z K, Zhou T, Zhang Y C. Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs. Physica A, 2010, 389(1): 179–186.CrossRefGoogle Scholar
  47. [47]
    Liu Z, Shi C, Sun M. FolkDiffusion: A graph-based tag suggestion method for folksonomies. In Proc. the 6th Asia Info. Retrieval Societies Conf., Taipei, China, Dec. 1–3, 2010, pp.231-240.Google Scholar
  48. [48]
    Lipczak M. Tag recommendation for folksonomies oriented towards individual users. In Proc. ECML PKDD Discovery Challenge (RSDC2008), Antwerp, Belgium, Sept. 15, 2008, pp.84-95.Google Scholar
  49. [49]
    Rendle S, Marinho L B, Nanopoulos A, Thieme L S. Learning optimal ranking with tensor factorization for tag recommendation. In Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Pairs, France, Jun. 28-Jul. 1, 2009, pp.727-736.Google Scholar
  50. [50]
    Ghoshal G, Zlatić V, Caldarelli G et al. Random hypergraphs and their applications. Phys. Rev. E, 2009, 79(6): 066118.MathSciNetCrossRefGoogle Scholar
  51. [51]
    Zlatić V, Ghoshal G, Caldarelli G. Hypergraph topological quantities for tagged social networks. Phys. Rev. E, 2009, 80(3): 036118.CrossRefGoogle Scholar
  52. [52]
    Zhang Z K, Liu C. A hypergraph model of social tagging networks. J. Stat. Mech., 2010, (10): P10005.CrossRefGoogle Scholar
  53. [53]
    Gunawardana A, Shani G. A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res., 2009, 10: 2935–2962.MathSciNetGoogle Scholar
  54. [54]
    Zhou T, Kuscsik Z, Liu J G et al. Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. U.S.A., 2010, 107(10): 4511–4515.CrossRefGoogle Scholar
  55. [55]
    Hanley J A, McNeil B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982, 143(1): 29–36.Google Scholar
  56. [56]
    Clauset A, Moore C, Newman M E J. Finding community structure in very large networks. Nature, 2008, 453(7191): 98–101.CrossRefGoogle Scholar
  57. [57]
    Zhou T, Su R Q, Liu R R, Jiang L L, Wang B H, Zhang Y C. Effect of initial configuration on network-based recommendation. Europhysics Letters, 2008, 81(5): 58004.CrossRefGoogle Scholar
  58. [58]
    Shang M S, Lü L, Zhang Y C et al. Empirical analysis of web-based user-object bipartite networks. EPL, 2010, 90: 48006.CrossRefGoogle Scholar
  59. [59]
    Zhang Y C, Blattner M, Yu Y K. Heat conduction process on community networks as a recommendation mode. Phys. Rev. Lett., 2007, 99(15): 154301.CrossRefGoogle Scholar
  60. [60]
    Shang M S, Zhang Z K, Zhou T, Zhang Y C. Collaborative filtering with diffusion-based similarity on tripartite graphs. Physica A, 2010, 389(6): 1259–1264.CrossRefGoogle Scholar
  61. [61]
    Shang M S, Zhang Z K. Diffusion-based recommendation in collaborative tagging systems. Chin. Phys. Lett., 2009, 26(11): 118903.MathSciNetCrossRefGoogle Scholar
  62. [62]
    Wu P, Zhang Z K. Enhancing personalized recommendation in weighted social tagging networks. Physical Procdia, 2010, 3(5): 1877–1885.CrossRefGoogle Scholar
  63. [63]
    Salton G, McGill M J. Introduction to Model Information Retrieval. MuGraw-Hill, New York, 1983.Google Scholar
  64. [64]
    Zhang Z K, Liu C. Identifying the role of social tags and its application in recommender systems. Int. J. Complex Systems in Science, 2011, 1(1): 10–15.Google Scholar
  65. [65]
    Liang H, Xu Y, Li Y et al. Connecting users and items with weighted tags for personalized item recommendations. In Proc. 21st ACM Conf. Hypertext and Hypermedia (HT2010), Toronto, Ontario, Canada, Jun. 13–16, 2010, pp.51-60.Google Scholar
  66. [66]
    Szomszor M, Cattuto C, Alani H et al. Folksonomies, the semantic web, and movie recommendation. In Proc. the 4th Euro. Semantic Web Conf., Innsbruck, Australia, Jun. 3–7, 2007, pp.71-84.Google Scholar
  67. [67]
    Tso-Sutter K H L, Marinho L B, Schmidt-Thieme L. Tag-aware recommender systems by fusion of collaborative filtering algorithms. In Proc. the 2008 ACM Symposium on Applied Computing, Fortaleza, Ceará, Brazil, Mar. 16–20, 2008, pp.1995-1999.Google Scholar
  68. [68]
    Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Rev., 2009, 51(3): 455–500.MathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    Xu Y, Zhang L, Liu W. Cubic analysis of social bookmarking for personalized recommendation. Frontiers of WWW Research and Development-APWeb 2006, Beijing, China, Apr. 21–25, 2006, pp.733-738.Google Scholar
  70. [70]
    Symeonidis P. User recommendations based on tensor dimensionality reduction. Artificial Intelligence Applications and Innovations III, 2009, pp.331-340.Google Scholar
  71. [71]
    Kantor P B, Ricci F, Rokach L, Shapira B. Recommender Systems Handbook. Springer, 2010.Google Scholar
  72. [72]
    Wall M, Rechtsteiner A, Rocha L. Singular value decomposition and principal component analysis. A Practical Approach to Microarray Data Analysis, 2003, pp.91-109.Google Scholar
  73. [73]
    De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 2000, 21(4): 1253–1278.MathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge Univ. Press, 2004.Google Scholar
  75. [75]
    Chin T J, Schindler K, Suter D. Incremental kernel SVD for face recognition with image sets. In Proc. Int. Conf. Automatic Face Gesture Recognition (FGR), Southampton, UK, Apr. 10–12, 2006, pp.461-466.Google Scholar
  76. [76]
    Rendle S, Schmidt-Thieme L. Pairwise interaction tensor factorization for personalized tag recommendation. In Proc. 3 rd ACM Int. Conf. Web Search Data Mining, New York, USA, Feb. 4–6, 2010, pp.81-90.Google Scholar
  77. [77]
    Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L. BPR: Bayesian personalized ranking from implicit feedback. In Proc. 25th Conf. Uncertainty Arti. Intel., Montreal, Canada, Jun. 18–21, 2009, pp.452-461.Google Scholar
  78. [78]
    Deerwester S, Dumais S T, Furnas G W, Landauer T K, Harshman R. Indexing by latent semantic analysis. J. Am. Soc. Info. Sci., 1990, 41(6): 391–407.CrossRefGoogle Scholar
  79. [79]
    Hofmann T. Probabilistic latent semantic indexing. In Proc. 22nd Ann. Int. ACM SIGIR Conf. Research and Development Information Retrieval, Berkeley, California, USA, Aug. 15–19, 1999, pp.50-57.Google Scholar
  80. [80]
    Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. J. Mach. Learn. Res., 2003, 3: 993–1022.zbMATHGoogle Scholar
  81. [81]
    Gelfand A E, Smith A F M. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc., 1990, 85(410): 398–409.MathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B, 1977, 39(1): 1–38.MathSciNetzbMATHGoogle Scholar
  83. [83]
    Umbrath A S, Wetzker R, Umbrath W, Hennig L. A hybrid PLSA approach for warmer cold start in folksonomy recommendation. In proc. ACM Recsys 2009 Workshop on Recommender Systems & the Social Web, New York, USA, Oct. 25, 2009, pp.87-90.Google Scholar
  84. [84]
    Si X, Sun M. Tag-LDA for scalable real-time tag recommendation. J. Comput. Infor. Syst., 2009, 6(1): 23–31.Google Scholar
  85. [85]
    Krestel R, Fankhauser P, Nejdl W. Latent dirichlet allocation for tag recommendation. In Proc. 3 rd ACM Conf. Recomm. Syst., New York, USA, Oct. 23–25, 2009, pp.61-68.Google Scholar
  86. [86]
    Krestel R, Fankhauser P. Tag recommendation using probabilistic topic models. In Proc. ECML PKDD Discovery Challenge 2009 (DC09), Bled, Slovenia, Sept. 7–11, 2009, p.131.Google Scholar
  87. [87]
    Bundschus M, Yu S, Tresp V et al. Hierarchical bayesian models for collaborative tagging systems. In Proc. the 9th IEEE International Conference on Data Mining, Miami, USA, 2009, Dec. 6–9, 2009, pp.728-733.Google Scholar
  88. [88]
    Bundschus M, Tresp V, Kriegel H P. Topic models for semantically annotated document collections. In Proc. NIPS Workshop: Applications for Topic Models: Text and Beyond, Whistler, Canada, Dec. 11, 2009, pp.1-4.Google Scholar
  89. [89]
    Harvey M, Baillie M, Ruthven I, Carman M. Tripartite hidden topic models for personalised tag suggestion. In Proc. 32nd European Conf. IR Research, Milton Keynes, UK, Mar. 28–31, 2010, pp.432-443.Google Scholar
  90. [90]
    Li D, He B, Ding Y et al. Community-based topic modeling for social tagging. In Proc. 9th ACM Int. Conf. Infor. Knowl. Manag. (CIKM2010), Toronto, Canada, Oct. 26–30, 2010, pp.54-63.Google Scholar
  91. [91]
    Girvan M, Newman M E J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A., 2002, 99(12): 7821–7826.MathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    Leskovec J, Lang K J, Mahoney M. Empirical comparison of algorithms for network community detection. In Proc. 19th Int. Conf. WWW, Raleigh, USA, Apr. 26–30, 2010, pp.631-640.Google Scholar
  93. [93]
    Wang J W, Rong L L, Deng Q H, Zhang J Y. Evolving hypernetwork mode. Eur. Phys. J. B, 2010, 77(4): 493–498.CrossRefGoogle Scholar
  94. [94]
    Lambiotte R, Ausllos M. Collaborative tagging as a tripartite network. Lect. Notes Comput. Sci., 2006, 3993: 1114–1117.CrossRefGoogle Scholar
  95. [95]
    Cattuto C, Schmitz C, Baldassarri A, Servedio V D P, Loreto V, Hotho A, Grahl M, Stumme G. Network properties of folksonomies. AI Commun., 2007, 4: 245–262.MathSciNetGoogle Scholar
  96. [96]
    Hotho A, Jäschke R, Schmitz C, Stumme G. Trend detection in folksonomies. Semantic Multimedia, 2006, 4306: 56–70.CrossRefGoogle Scholar
  97. [97]
    Peng J, Zeng D D, Zhao H, Wang F. Collaborative filtering in social tagging systems based on joint item-tag recommendations. In Proc. 9th ACM Int. Conf. Infor. Knowl. Manag., Toronto, Canada, Oct. 26–30,2010, pp.809-818.Google Scholar
  98. [98]
    Gemmell J, Shepitsen A, Mobasher B, Burke R. Personalized recommendation in social tagging systems using hierarchical clustering. Intelligent Techniques for Web Personalization & Recommender Systems, Lausanne, Switzerland, Oct. 23–25, 2008, pp.259-266.Google Scholar
  99. [99]
    Ramage D, Heymann P, Manning C D, Garcia-Molina H. Clustering the tagged web. In Proc. 2nd ACM Int. Conf. Web Search and Data Mining, Barcelona, Spain, Feb. 9–12, 2009, pp.54-63.Google Scholar
  100. [100]
    Koutrika G, Effendi F A, Gyöngyi Z, Heymann P, Hector G M. Combating spam in tagging systems: An evaluation. ACM Trans. Web, 2008, 2(4): 22–57.CrossRefGoogle Scholar
  101. [101]
    Pittel B. On spreading a rumor. SIAM J. Appl. Math., 1987, 47(1): 213–223.MathSciNetCrossRefzbMATHGoogle Scholar
  102. [102]
    Karp R, Schindelhauer C, Shenker S, Vocking B. Randomized rumor spreading. In Proc. 41st IEEE FOCS, Redondo Beach, USA, Nov. 12–14, 2000, pp.565-574.Google Scholar
  103. [103]
    Kontostathis A, Galitsky L, Pottenger W M, Roy S, Phelps D J. A survey of emerging trend detection in textual data mining. Survey of Text Mining: Clustering, Classification, and Retrieval, 2003, Springer.Google Scholar
  104. [104]
    Medhi D, Tipper D. Multi-layered network survivability-models, analysis, architecture, framework and implementation: An overview. In Proc. 2000 DARPA Information Survivability Conference & Exposition, Hilton Head, USA, Jan. 25–27, 2000, pp.173-186.Google Scholar
  105. [105]
    Scott J. Social network analysis. ACM Trans. Web, 1988, 2(1): 109–127.Google Scholar
  106. [106]
    Medo M, Zhang Y C, Zhou T. Adaptive model for recommendation of news. EPL, 2009, 88: 38005.CrossRefGoogle Scholar
  107. [107]
    Huang J, Cheng X Q, Guo J, Shen H W, Yang K. Social recommendation with interpersonal influence. In Proc. 2010 Conf. ECAI 2010: 19th Euro. Conf. on Artif. Int., Lisbon, Portugal, Aug. 16–20, 2010, pp.601-606.Google Scholar
  108. [108]
    Cimini G, Medo M, Zhou T, Wei D, Zhang Y C. Heterogeneity, quality, and reputation in an adaptive recommendation model. Eur. Phys. J. B, 2011, 80(2): 201–208.CrossRefGoogle Scholar
  109. [109]
    Heymann P, Ramage D, Garcia-Molina H. Social tag prediction. In Proc. 31st Annual Int. ACM SIGIR Conf. Research Development Information Retrieval, Singapore, Jul. 20–24, 2008, pp.531-538.Google Scholar
  110. [110]
    Lü L, Zhou T. Link prediction in complex networks: A survey. Physica A, 2011, 390(6): 1150–1170.Google Scholar
  111. [111]
    Dubinko M, Kumar R, Magnani J, Novak J, Raghavan P, Tomkins A. Visualizing tags over time. ACM Trans. Web, 2007, 1(2): 7.CrossRefGoogle Scholar
  112. [112]
    Liu C, Yueng Y H, Zhang Z K. Self-organization in social tagging systems. Phys. Rev. E, 2011, 83: 066104.CrossRefGoogle Scholar
  113. [113]
    Barabási A L. The origin of bursts and heavy tails in human dynamics. Nature, 2005, 435(7039): 207–211.Google Scholar
  114. [114]
    Gantner Z, Rendle S, Schmidt-Thieme L. Factorization models for context-/time-aware movie recommendations. In Proc. Workshop on Context-Aware Movie Recommendation, Barcelona, Spain, Sept. 30, 2010, pp.14-19.Google Scholar
  115. [115]
    Xiang L, Yuan Q, Zhao S, Chen L, Zhang X, Yang Q, Sun J. Temporal recommendation on graphs via long-and short-term preference fusion. In Proc. the 16th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., Washington, USA, 2010, pp.723-732.Google Scholar

Copyright information

© Springer Science+Business Media, LLC & Science Press, China 2011

Authors and Affiliations

  1. 1.Institute of Information EconomyHangzhou Normal UniversityHangzhouChina
  2. 2.Web Sciences CenterUniversity of Electronic Science and TechnologyChengduChina
  3. 3.Department of PhysicsUniversity of FribourgFribourgSwitzerland

Personalised recommendations