Skip to main content
Log in

A New Gradient Fidelity Term for Avoiding Staircasing Effect

  • Short Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Image denoising with some second order nonlinear PDEs often leads to a staircasing effect, which may produce undesirable blocky image. In this paper, we present a new gradient fidelity term and couple it with these PDEs to solve the problem. At first, we smooth the normal vector fields (i.e., the gradient fields) of the noisy image by total variation (TV) minimization and make the gradient of desirable image close to the smoothed normals, which is the idea of our gradient fidelity term. Then, we introduce the Euler-Lagrange equation of the gradient fidelity term into nonlinear diffusion PDEs for noise and staircasing removal. To speed up the computation of the vectorial TV minimization, the dual approach proposed by Bresson and Chan is employed. Some numerical experiments demonstrate that our gradient fidelity term can help to avoid the staircasing effect effectively, while preserving sharp discontinuities in images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12(7): 629–639.

    Article  Google Scholar 

  2. El-Fallah A l, Ford G E. The evolution of mean curvature in image filtering. In Proc. ICIP, Austin, USA, Nov. 13–16, 1994, pp.298–303.

  3. Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Analysis, 1992, 29(1): 845–866.

    Article  MATH  MathSciNet  Google Scholar 

  4. Sochen N, Kimmel R, Malladi R. From high energy physics to low level vision. LBNL Technical Report No.39243, Berkeley, CA, August 1996.

  5. Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4): 259–268.

    Article  MATH  Google Scholar 

  6. Andreu F, Caselles V, Diaz J I, Mazon J M. Some qualitative properties of the total variation flow. J. Funct. Anal., 2002, 188(2): 516–547.

    Article  MATH  MathSciNet  Google Scholar 

  7. Joo K, Kim S. PDE-based image restoration, I: Antistaircasing and anti-diffusion. Technical Report 2003-07, Department of Mathematics, University of Kentucky, 2003.

  8. Chan T F, Esedoglu S, Park F, Yip A. Recent developments in total variation image restoration. CAM Report 05-01, Department of Mathematics, UCLA, 2004.

  9. Whitaker R T, Pizer S M. A multi-scale approach to nonuniform diffusion. CVGIP: Image Understanding, 1993, 57(1): 99–110.

    Article  Google Scholar 

  10. Chambolle A, Lions P L. Image recovery via total variation minimization and related problems. Numer. Math., 1997, 76(2): 167–188.

    Article  MATH  MathSciNet  Google Scholar 

  11. Rahman T, Tai X C, Osher S. A TV-stokes denoising algorithm. In Proc. SSVM, Ischia, Italy, May 30–June 2, 2007, pp.473–483.

  12. Lysaker M, Osher S, Tai X C. Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Processing, 2004, 13(10): 1345–1357.

    Article  MathSciNet  Google Scholar 

  13. Lysaker M, Lundervold A, Tai X C. Noise removal using fourth order partial differential equation with applications to medical magnetic resonance images is space and time. IEEE Trans. Image Processing, 2003, 12(12): 1579–1590.

    Article  Google Scholar 

  14. Chan T F, Marquina A, Mulet P. High-order total variationbased image restoration. SIAM J. Sci. Comput., 2000, 22(2): 503–516.

    Article  MATH  MathSciNet  Google Scholar 

  15. You Y L, Kaveh M. Fourth-order partial differential equation for noise removal. IEEE Trans. Image Processing, 2000, 9(10): 1723–1730.

    Article  MATH  MathSciNet  Google Scholar 

  16. Didas S, Setzer S, Steidl G. Combined l2 data and gradient fitting in conjunction with l1 regularization. Preprint No. 143, DFG Priority Programme 1114, Department of Mathematics, University of Bremen, Germany, 2006.

  17. Zhu L X, Xia D S. Staircase effect alleviation by coupling gradient fidelity term. Image Vis. Comput., 2008, 26(8): 1163–1170.

    Article  Google Scholar 

  18. Dong F F, Liu Z, Kong D X, Liu K F. An improved LOT model for image restoration. J. Math. Imaging and Vision, 2009, 34(1): 89–97.

    Article  MathSciNet  Google Scholar 

  19. Osher S, Burger M, Goldfarb D, Xu J, Yin W. An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul., 2005, 4(2): 460–489.

    Article  MATH  MathSciNet  Google Scholar 

  20. Bresson X, Chan T F. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2008, 2(4): 455–484.

    Article  MATH  Google Scholar 

  21. Weickert J. A Review of Nonlinear Diffusion Filtering. Scale-Space Theory in Computer Vision, LNCS 1252, Springer Berlin/Heidelberg, 1997, pp.1–28.

  22. Blomgren P, Chan T F. Color TV: Total variation methods for restoration of vector-valued images. IEEE Trans. Image Processing, 1998, 7(3): 304–309.

    Article  Google Scholar 

  23. Chambolle A. An algorithm for total variation minimization and applications. J. Math. Imaging and Vision, 2004, 20(1/2): 89–97.

    Article  MathSciNet  Google Scholar 

  24. Bresson X, Esedoglu S, Vandergheynst P, Thiran J P, Osher S. Fast global minimization of the active contour/snake model. J. Math. Imaging and Vision, 2007, 28(2): 151–167.

    Article  MathSciNet  Google Scholar 

  25. Chan T F, Golub G H, Mulet P. A nonlinear primal-dual method for total variation-based image restoration. In Proc. ICAOS 1996, Paris, France, June 26–28, 1996, pp.241–252.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Fang Dong.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant No. 10801045, Postdoctoral Foundation of Zhejiang Province under Grant Nos. 1098129 and 109001329 from the Zhejiang University of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, FF., Liu, Z. A New Gradient Fidelity Term for Avoiding Staircasing Effect. J. Comput. Sci. Technol. 24, 1162–1170 (2009). https://doi.org/10.1007/s11390-009-9289-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-009-9289-1

Keywords

Navigation