Skip to main content
Log in

Rigidity Constraints for Large Mesh Deformation

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

It is a challenging problem of surface-based deformation to avoid apparent volumetric distortions around largely deformed areas. In this paper, we propose a new rigidity constraint for gradient domain mesh deformation to address this problem. Intuitively the proposed constraint can be regarded as several small cubes defined by the mesh vertices through mean value coordinates. The user interactively specifies the cubes in the regions which are prone to volumetric distortions, and the rigidity constraints could make the mesh behave like a solid object during deformation. The experimental results demonstrate that our constraint is intuitive, easy to use and very effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexa M. Differential coordinates for local mesh morphing and deformation. The Visual Computer, 2003, 19(2): 105–114.

    MATH  Google Scholar 

  2. Lipman Y, Sorkine O, Cohen-Or D et al. Differential coordinates for interactive mesh editing. In Proc. Shape Modeling International, Genova, Italy, June, 2004, pp.181–190.

  3. Sorkine O, Lipman Y, Cohen-Or D et al. Laplacian surface editing. In Proc. Eurographics Symposium on Geometry Processing, Nice, France, July 8–10, 2004, pp.175–184.

  4. Yu Y, Zhou K, Xu D et al. Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics, 2004, 23(3): 644–651.

    Article  Google Scholar 

  5. Au O K-C, Tai C-L, Fu H et al. Mesh editing with curvature flow Laplacian. In Proc. Eurographics Symposium on Geometry Processing, Vienna, Austria, July 4–6, 2005. (poster)

  6. Lipman Y, Sorkine O, Levin D et al. Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics, 2005, 24(3): 479–487.

    Article  Google Scholar 

  7. Zayer R, Rössl C, Karni Z et al. Harmonic guidance for surface deformation. Computer Graphics Forum, 2005, 24(3): 601–609.

    Article  Google Scholar 

  8. Zhou K, Huang J, Snyder J et al. Large mesh deformation using the volumetric graph Laplacian. ACM Transactions on Graphics, 2005, 24(3): 496–503.

    Article  Google Scholar 

  9. Au O K-C, Tai C-L, Liu L et al. Dual Laplacian editing for meshes. IEEE Transaction on Visualization and Computer Graphics, 2006, 12(3): 386–395.

    Article  Google Scholar 

  10. Huang J, Shi X, Liu X et al. Geometrically-based potential energy for simulating deformable objects. The Visual Computer, 2006, 22(9): 740–748.

    Article  Google Scholar 

  11. Huang J, Shi X, Liu X et al. Subspace gradient domain mesh deformation. ACM Transactions on Graphics, 2006, 25(3): 1126–1134.

    Article  Google Scholar 

  12. Shi L, Yu Y, Bell N et al. A fast multigrid algorithm for mesh deformation. ACM Transactions on Graphics, 2006, 25(3): 1108–1117.

    Article  Google Scholar 

  13. Au O K-C, Fu H, Tai C-L et al. Handle-aware isolines for scalable shape editing. ACM Transactions on Graphics, 2007, 26(3): Article 83.

    Article  Google Scholar 

  14. Lipman Y, Cohen-Or D, Gal R et al. Volume and shape preservation via moving frame manipulation. ACM Transactions on Graphics, 2007, 26(1): Article 5.

    Article  Google Scholar 

  15. Xu W, Zhou K, Yu Y et al. Gradient domain editing of deforming mesh sequences. ACM Transactions on Graphics, 2007, 26(3): Article 84.

    Google Scholar 

  16. Floater M S, Kos G, Reimers M. Mean value coordinates in 3D. Computer Aided Geometric Design, 2005, 22(7): 623–631.

    Article  MATH  MathSciNet  Google Scholar 

  17. Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics, 2005, 24(3): 561–566.

    Article  Google Scholar 

  18. Dui G. Determination of the rotation tensor in the polar decomposition. Journal of Elasticity, 1998, 50(3): 197–208.

    Article  MATH  MathSciNet  Google Scholar 

  19. Sederberg T, Parry S. Free-form deformation of solid geometric models. In Proc. SIGGRAPH, Dallas, Texas, USA, August 18–22, 1986, pp.151–160.

  20. Hus W, Hughes J, Kaufman H. Direct manipulation of free-form deformations. In Proc. SIGGRAPH, Chicago, Illinois, USA, July 26–31, 1992, pp.177–184.

  21. Singh K, Fiume E. Wires: A geometric deformation technique. In Proc. SIGGRAPH, Orlando, Florida, USA, July 19–24, 1998, pp.405–414.

  22. Hu S, Zhang H, Tai C-L et al. Direct manipulation of FFD: Efficient explicit solutions and decomposible multiple point constraints. The Visual Computer, 2001, 17(6): 370–379.

    MATH  Google Scholar 

  23. Joshi P, Meyer M, DeRose T et al. Harmonic coordinates for character articulation. ACM Transactions on Graphics, 2007, 26(3): Article 71.

    Article  Google Scholar 

  24. Alexa M, Cohen-Or D, Levin D. As-rigid-as-possible shape interpolation. In Proc. SIGGRAPH, New Orleans, Louisiana, July 23–28, 2000, pp.157–165.

  25. Sumner R W, Popoviæ J. Deformation transfer for triangle meshes. ACM Transactions on Graphics, 2004, 23(3): 399–405.

    Article  Google Scholar 

  26. Yan H, Hu S, Martin R et al. Shape deformation using a skeleton to drive simplex transformations. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(3): 693–706.

    Article  Google Scholar 

  27. Zorin D, Schröder P, Sweldens W. Interactive multiresolution mesh editing. In Proc. SIGGRAPH, Los Angeles, California, August 3–8, 1997, pp.259–268.

  28. Kobbelt L, Campagna S, Vorsatz J et al. Interactive multi-resolution modeling on arbitrary meshes. In Proc. SIGGRAPH, Orlando, Florida, July 19–24, 1998, pp.105–114.

  29. Guskov I, Sweldens W, Schröder P. Multiresolution signal processing for meshes. In Proc. SIGGRAPH, Los Angeles, California, 1999, pp.325–334.

  30. Botsch M, Kobbelt L. Multiresolution surface representation based on displacement volumes. Computer Graphics Forum, 2003, 22(3): 483–491.

    Article  Google Scholar 

  31. Sauvage B, Hahmann S, Bonneau G-P. Volume preservation of multiresolution meshes. Computer Graphics Forum, 2007, 26(3): 275–283.

    Article  Google Scholar 

  32. Müller M, Heidelberger B, Teschner M et al. Meshless deformations based on shape matching. ACM Transactions on Graphics, 2005, 24(3): 471–478.

    Article  Google Scholar 

  33. Liepa P. Filling holes in meshes. In Proc. Eurographics Symposium on Geometry Processing, Aachen, Germany, June 23–25, 2003, pp.200–205.

  34. Ju T. Robust repair of polygonal models. ACM Transactions on Graphics, 2004, 23(3): 888–895.

    Article  Google Scholar 

  35. Nguyen M X, Yuan X, Chen B. Geometry completion and detail generation by texture synthesis. In Proc. Pacific Graphics, Macao, China, October 12–14, 2005, pp.23–32.

  36. Desbrun M, Meyer M, Scheöder P et al. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH, Los Angeles, California, August 8–13, 1999, pp.317–324.

  37. Hoger A, Carlson D. Determination of the stretch and rotation in the polar decomposition of the deformation gradient. Quart. Appl. Math., 1984, 42(1): 113–117.

    MATH  MathSciNet  Google Scholar 

  38. Sawyers K. Comments on the paper “Determination of the stretch and rotation in the polar decomposition of the deformation gradient” by A. Hoger and D.E. Carlson. Quart. Appl. Math., 1986, 44(2): 309–311.

    MathSciNet  Google Scholar 

  39. Xiong Z, Zheng Q. General algorithms for the polar decomposition and strains. Acta Mechanica Sinica, 1988, 4(2): 175–181.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Additional information

This work is supported by the National Basic Research 973 Program of China under Grant Nos. 2002CB312101 and 2006CB303102, the National Natural Science Foundation of China under Grant No. 60603078, and the Program for New Century Excellent Talents in University of China under Grant No. NCET-06-0516.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 83.7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Liu, XG., Peng, QS. et al. Rigidity Constraints for Large Mesh Deformation. J. Comput. Sci. Technol. 24, 47–55 (2009). https://doi.org/10.1007/s11390-009-9213-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-009-9213-8

Keywords

Navigation