Advertisement

Journal of Computer Science and Technology

, Volume 21, Issue 1, pp 116–125 | Cite as

Image Region Selection and Ensemble for Face Recognition

  • Xin Geng
  • Zhi-Hua ZhouEmail author
Article

Abstract

In this paper, a novel framework for face recognition, namely Selective Ensemble of Image Regions (SEIR), is proposed. In this framework, all possible regions in the face image are regarded as a certain kind of features. There are two main steps in SEIR: the first step is to automatically select several regions from all possible candidates; the second step is to construct classifier ensemble from the selected regions. An implementation of SEIR based on multiple eigenspaces, namely SEME, is also proposed in this paper. SEME is analyzed and compared with eigenface, PCA + LDA, eigenfeature, and eigenface + eigenfeature through experiments. The experimental results show that SEME achieves the best performance.

Keywords

face recognition region selection multiple eigenspaces ensemble learning selective ensemble 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71–86.Google Scholar
  2. 2.
    Moghaddam B, Pentland A. Probabilistic visual learning for object representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 696–710.CrossRefGoogle Scholar
  3. 3.
    Jolliffe I T. Principal Component Analysis. New York: Springer-Verlag, 1986.Google Scholar
  4. 4.
    Moghaddam B, Jebara T, Pentland A. Bayesian face recognition. Pattern Recognition, 2000, 33(11): 1771–1782.CrossRefGoogle Scholar
  5. 5.
    Pentland A, Moghaddam B, Starner T. View-based and modular eigenspaces for face recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, 1994, pp.84–91.Google Scholar
  6. 6.
    Brunelli R, Poggio T. Face recognition: Feature versus templates. IEEE Trans. Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042–1052.CrossRefGoogle Scholar
  7. 7.
    Zhou Z H, Wu J, Tang W. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 2002, 137(1-2): 239–263.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Penev P S, Atick J J. Local feature analysis: A general statistical theory for object representation. Network: Computation in Neural Systems, 1996, 7: 477–500.CrossRefGoogle Scholar
  9. 9.
    Yang P, Shan S, Gao W, Li S Z, Zhang D. Face recognition using AdaBoosted Gabor features. In Proc. the 6th International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, 2004, pp.356–361.Google Scholar
  10. 10.
    Krogh A, Vedelsby J. Neural Network Ensembles, Cross Validation, and Active Learning. Advances in Neural Information Processing Systems 7, Tesauro G, Touretzky D, Leen T (eds.), Cambridge, MA: MIT Press, 1995, pp.231–238.Google Scholar
  11. 11.
    Moghaddam B, Wahid W, Pentland A. Beyond eigenfaces: Probabilistic matching for face recognition. In Proc. the IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 1998, pp.30–35.Google Scholar
  12. 12.
    Moghaddam B. Principal manifolds and probabilistic subspaces for visual recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(6): 780–788.CrossRefGoogle Scholar
  13. 13.
    Zhao W, Chellappa R, Philips P. Subspace linear discriminant analysis for face recognition. Technical Report CAR-TR-914. Center for Automation Research, University of Maryland, 1999.Google Scholar
  14. 14.
    Ho T K. Nearest Neighbors in Random Subspaces. In Lecture Notes in Computer Science 1451, Amin A, Dori D, Pudil P, Freeman H (eds.), Berlin: Springer, 1998, pp.640–648.Google Scholar
  15. 15.
    Lowe D. Similarity metric learning for a variable-kernel classifier. Neural Computation, 1995, 7(1): 72–85.Google Scholar
  16. 16.
    Phillips P J, Wechsler H, Huang J, Rauss P J. The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing, 1998, 16(5): 295–306.CrossRefGoogle Scholar
  17. 17.
    Martinez A M, Benavente R. The AR face database. CVC Technical Report #24, June 1998.Google Scholar
  18. 18.
    Samaria F, Harter A. Parameterisation of a stochastic model for human face identification. In Proc. the 2nd IEEE International Workshop on Applications of Computer Vision, Sarasota, FL, 1994, pp.138–142.Google Scholar
  19. 19.
    The BioID face database. BioID-Technology Research, June 2001. http://www.bioid.com/research/in-dex.htm.
  20. 20.
    Poggio T, Girosi F. A theory of networks for recognize three-dimensional objects. Nature, 1990, 343(6225): 1–3.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.National Laboratory for Novel Software TechnologyNanjing UniversityNanjingP.R. China

Personalised recommendations