Advertisement

Journal of Computer Science and Technology

, Volume 21, Issue 1, pp 82–88 | Cite as

Pseudorandomness of Camellia-Like Scheme

  • Wen-Ling WuEmail author
Article

Abstract

Luby and Rackoff idealized DES by replacing each round function with one large random function. In this paper, the author idealizes Camellia by replacing each S-box with one small random function, which is named Camellia-like scheme. It is then proved that five-round Camellia-like scheme is pseudorandom and eight-round Camellia-like scheme is super-pseudorandom for adaptive adversaries. Further the paper considers more efficient construction of Camellia-like scheme, and discusses how to construct pseudorandom Camellia-like scheme from less random functions.

Keywords

block cipher Camellia random function pseudorandomness super-pseudorandomness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luby M, Rackoff C. How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing, 1988, 17(2): 373–386. (A preliminary version including other results appeared in Proceedings of the 18th ACM Symposium on Theory of Computing, 1986, pp.356–363).Google Scholar
  2. 2.
    Schnorr C P. On the construction of random number generators and random function generators. In Advances in Cryptology—Eurocrypt'88, LNCS 330, Springer-Verlag, Davos, Switzerland, May 1988, pp.225–232.Google Scholar
  3. 3.
    Rueppel R A. On the security of Schnorr's pseudorandom generator. In Advances in Cryptology—Eurocrypt'89, LNCS 434, Springer-Verlag, Houthalen, Belgium, April 1989, pp.423–428.Google Scholar
  4. 4.
    Zheng Y, Matsumoto T, Imai H. Impossibility and optimality results on constructing pseudorandom permutations. In Advances in Cryptology-Eurocrypt'89, LNCS 434, Springer-Verlag, Houthalen, Belgium, April 1989, pp.412–422.Google Scholar
  5. 5.
    Zheng Y, Matsumoto T, Imai H. On the construction of block ciphers provably secure and not relying on any unproved hypotheses. In Advances in Cryptology—Crypto'89, LNCS 435, Springer-Verlag, New York, USA, Aug. 1989, pp.461–480.Google Scholar
  6. 6.
    Pieprzyk J. How to construct pseudorandom permutations from single pseudorandom functions. In Advances in Cryptology—Eurocrypt'90, LNCS 473, Springer-Verlag, Aarhus, Denmark, May 1990, pp.140–150.Google Scholar
  7. 7.
    Patarin J. New results on pseudorandom permutation generators based on the DES Scheme. In Advances in Cryptology—Crypto'91, LNCS 547, Springer-Verlag, Brighton, UK, April 1991, pp.72–77.Google Scholar
  8. 8.
    Sadeghiyan B, Pieprzyk J. On the necessary and sufficient conditions for the construction of super pseudorandom permutations. In Advances in Cryptology—Asiacrypt'91, LNCS 739, Springer-Verlag, Sydney, Australia, Dec. 1991, pp.117–123.Google Scholar
  9. 9.
    Pieprzyk J, Sadeghiyan B. Optimal Perfect Randomizers. In Advances in Cryptology—Asiacrypt'91, LNCS 739, Springer-Verlag, Sydney, Australia, Dec. 1991, pp.225–236.Google Scholar
  10. 10.
    Maurer U M. A simplified and generalized treatment of Luby-Rackoff pseudorandom permutation generators. In Advances in Cryptology—Eurocrypt'92, LNCS 658, Springer-Verlag, Balatonfüred, Hungary, May 1992, pp.239–255.Google Scholar
  11. 11.
    Patarin J. How to construct pseudorandom permutations from a single pseudorandom function. In Advances in Cryptology—Eurocrypt'92, LNCS 658, Springer-Verlag, Balatonfüred, Hungary, May 1992, pp.256–266.Google Scholar
  12. 12.
    Even S, Mansour Y. A construction of a cipher from a single pseudorandom permutation. In Advances in Cryptology—Asiacrypt'91, LNCS 739, Springer-Verlag, Sydney, Australia, Dec. 1991, pp.181–193.Google Scholar
  13. 13.
    Lucks S. Faster Luby-Rackoff ciphers. In Fast Software Encryption—FSE'96, LNCS 1039, Springer-Verlag, Haifa, Israel, Jan. 1996, pp.189–203.Google Scholar
  14. 14.
    Patel S, Ramzan Z, Sundaram G. Towards making Luby-Rackoff ciphers optimal and practical. In Fast Software Encryption—FSE'99, LNCS 1636, Springer-Verlag, Rome, Italy, Mar. 1999, pp.171–185.Google Scholar
  15. 15.
    Naor M, Reingold O. On the construction of pseudorandom permutations Luby-Rackoff revisited. Journal of Cryptology, 1999, 12(1): 29–66.MathSciNetGoogle Scholar
  16. 16.
    Naor M, Reingold O. From unpredictability to indistinguishability: A simple construction of pseudo-random functions from MACs. In Advances in Cryptology—Crypto'98, LNCS 1462, Springer-Verlag, Santa Barbara, CA, USA, Aug. 1998, pp.267–282.Google Scholar
  17. 17.
    Vaudenay S. Provable security for block ciphers by decorrelation. In Proc. Symposium on Theoretical Aspects of Computer Science'98, LNCS 1373, Springer-Verlag, Paris, France, Mar. 1998, pp.249–275.Google Scholar
  18. 18.
    Iwata T, Kurosawa K. On the pseudorandomness of the AES finalists—RC6 and Serpent. In Fast Software Encryption—FSE 2000, LNCS 1978, Springer-Verlag, New York, USA, April 2000, pp.231–243.Google Scholar
  19. 19.
    Iwata T, Yoshino T, Yuasa T, Kurosawa K. Round security and super-pseudorandomness of MISTY type structure. In Fast Software Encryption—FSE 2001, LNCS 2355, Springer-Verlag, Yokohama, Japan, April 2001, pp.233–247.Google Scholar
  20. 20.
    Ramzan Z, Reyzin L. On the round security of symmetric-key cryptographic primitives. In Advances in Cryptology—Crypto 2000, LNCS 1880, Springer-Verlag, Santa Barbara, CA, USA, Aug. 2000, pp.376–393.Google Scholar
  21. 21.
    Gilbert H, Minier M. New results on the pseudorandomness of some block cipher constructions. In Fast Software Encryption—FSE 2001, LNCS 2355, Springer-Verlag, Yokohama, Japan, April 2001, pp.248–266.Google Scholar
  22. 22.
    Moriai S, Vaudenay S. On the pseudorandomness of top-level schemes of block ciphers. In Advances in Cryptology—Asiacrypt 2000, LNCS 1876, Berlin: Springer-Verlag, Kyoto, Japan, Dec. 2000, pp.289–302.Google Scholar
  23. 23.
    Aoki K, Ichikawa T, Kanda M et al. Specification of Camellia—A 128-bit block cipher. In Selected Areas in Cryptography—SAC 2000, LNCS 2012, Springer-Verlag, Waterloo, Ontario, Canada, August 2000, pp.183–191.Google Scholar
  24. 24.
  25. 25.
    Wenling Wu, Dengguo Feng, Hua Chen. Collision attack and pseudorandomness of reduced-round Camellia. In Selected Areas in Cryptography—SAC 2004, LNCS 3357, Berlin: Springer-Verlag, Waterloo, Ontario, Canada, August 2004, pp.256–270.Google Scholar
  26. 26.
    Vaudenay S. On provable security of conventional cryptography. In Information Security and Cryptography—ICISC'99, LNCS 1787, Berlin: Springer-Verlag, Seoul, Korea, Dec. 1999, pp.1–16.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of SoftwareChinese Academy of SciencesBeijingP.R. China

Personalised recommendations