Advertisement

Der Gastroenterologe

, Volume 12, Issue 2, pp 114–129 | Cite as

Reizdarm und Reizmagen – Pathophysiologie und Biomarker

Schwerpunkt
  • 335 Downloads

Zusammenfassung

Funktionelle Magendarmerkrankungen, wie Reizdarm oder Reizmagen, gehören zu den häufigsten Gründen, warum Patienten den Arzt aufsuchen. Diagnose und gezielte Therapie bleiben bis heute eine große Herausforderung. Beide Syndrome werden bisher rein symptomenbasiert nach Ausschlussdiagnose diagnostiziert. Inzwischen ist aber klar, dass Reizdarm und Reizmagen mit definierten strukturellen, molekularen, genetischen, immunologischen, nervalen und psychosozialen Veränderungen assoziiert sind. Symptome werden durch Stress, Motilitätsstörungen, gastrointestinale Infektionen, Immunaktivierung sowie erhöhte mechanische und chemische Sensibilität ausgelöst bzw. verschlimmert. Die vielen heute bekannten Pathomechanismen spiegeln zum einen den multifaktoriellen Charakter wider, sind zum anderen aber auch Hinweise auf pathophysiologisch unterschiedliche Erkrankungssubtypen. Es ist zu erwarten, dass die weitere Aufklärung pathophysiologisch relevanter Faktoren und deren Clusteranalyse und Korrelation mit den klinischen Symptomen die Diagnostik und Therapie funktioneller Magen-Darm-Erkrankungen verbessert. In Zukunft könnten Biomarker helfen, Patienten besser zu klassifizieren und damit eine spezifische Therapieentscheidung zu ermöglichen.

Schlüsselwörter

Gastrointestinale Erkrankung Pathologische Konditionen, Zeichen und Symptome Diarrhö Physiologie Biomarker 

Irritable bowel syndrome and functional dyspepsia—pathophysiology and biomarkers

Abstract

Functional gastrointestinal diseases such as irritable bowel syndrome (IBS) or functional dyspepsia (FD) are the most frequent causes why patients seek medical care. Diagnosis and therapy is a challenge. Both IBS and FD are a primarily symptom-based exclusion diagnosis. Recent findings indicate that IBS and FD are associated with well-defined structural, molecular, genetic, immunological, neural and psychosocial abnormalities. Symptoms are caused or worsen after particular diet, stress, gastroenteritis as well as mechanical and chemical hypersensitivity. The numerous pathophysiological mechanisms of IBS and FD reflect the multifactorial character of these diseases and strongly suggest the existence of distinct disease entities. It is expected that further insights into pathophysiological mechanisms, their clustering and association with clinical symptoms will improve diagnosis and therapy. The major challenge will be the development of biomarkers to better characterize IBS and FD subgroups and to treat the specific pathomechanisms.

Keywords

Gastrointestinal disease Pathological conditions, signs and symptoms Diarrhea Physiology Biomarkers 

Notes

Danksagung

Der Autor bedankt sich bei der Deutschen Forschungsgemeinschaft für die kontinuierliche Förderung seiner Forschung seit dem Jahr 1988 und bei allen ehemaligen und aktuellen Mitarbeitern und Mitarbeiterinnen sowie den vielen nationalen und internationalen Kollaborationspartnern.

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Schemann gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Akbar A, Yiangou Y, Facer P et al (2008) Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57:923–929CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Andresen V, Montori VM, Keller J et al (2008) Effects of 5‑hydroxytryptamine (serotonin) type 3 antagonists on symptom relief and constipation in nonconstipated irritable bowel syndrome: A systematic review and metaanalysis of randomized controlled trials. Clin Gastroenterol Hepatol 6:545–555CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Atkinson W, Lockhart S, Whorwell PJ et al (2006) Altered 5‑hydroxytryptamine signaling in patients with constipation- and diarrhea-predominant irritable bowel syndrome. Gastroenterology 130:34–43CrossRefPubMedGoogle Scholar
  4. 4.
    Berdún S, Rychter J, Vergara P (2015) Effects of nerve growth factor antagonist K252a on peritoneal mast cell degranulation: Implications for rat postoperative ileus. Am J Physiol Gastrointest Liver Physiol 309:G801–G806PubMedGoogle Scholar
  5. 5.
    Buhner S, Li Q, Vignali S, Barbara G (2009) Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137:1425–1434CrossRefPubMedGoogle Scholar
  6. 6.
    Buhner S, Li Q, Berger T et al (2012) Submucous rather than myenteric neurons are activated by mucosal biopsy supernatants from irritable bowel syndrome patients. Neurogastroenterol Motil 24:1134–e572CrossRefPubMedGoogle Scholar
  7. 7.
    Buhner S, Braak B, Li Q et al (2014) Neuronal activation by mucosal biopsy supernatants from irritable bowel syndrome patients is linked to visceral sensitivity. Exp Physiol 2014:1299–1311CrossRefGoogle Scholar
  8. 8.
    Camilleri M, McKinzie S, Busciglio I et al (2008) Prospective study of motor, sensory, psychologic, and autonomic functions in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol 6:772–781CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Camilleri M (2012) Peripheral mechanisms in irritable bowel syndrome. N Engl J Med 367:1626–1635CrossRefPubMedGoogle Scholar
  10. 10.
    Camilleri M (2014) Physiological underpinnings of irritable bowel syndrome: Neurohormonal mechanisms. J Physiol 592:2967–2980CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Camilleri M, Shin A, Busciglio I et al (2014) Validating biomarkers of treatable mechanisms in irritable bowel syndrome. Neurogastroenterol Motil 26:1677–1685CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Camilleri M (2015) Biomarkers and personalized therapy in lower functional gastrointestinal disorders. Aliment Pharmacol Ther 42:818–828CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Celli J, Rappold G, Niesler B (2016) The Human Serotonin Type 3 Receptor Gene (HTR3A-E) Allelic Variant Database. Hum Mutat. doi: 10.1002/humu.23136 PubMedGoogle Scholar
  14. 14.
    Cenac N, Andrews CN, Holzhausen M et al (2007) Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 117:636–647CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Choi YJ, Kim N, Kim J et al (2016) Upregulation of Vanilloid Receptor-1 in functional dyspepsia with or without Helicobacter pylori infection. Medicine (Baltimore) 95:e3410CrossRefGoogle Scholar
  16. 16.
    Cirillo C, Bessissow T, Desmet AS et al (2015) Evidence for neuronal and structural changes in submucous ganglia of patients with functional dyspepsia. Am J Gastroenterol 110:1205–1215CrossRefPubMedGoogle Scholar
  17. 17.
    Collins SM, Chang C, Mearin F (2012) Postinfectious chronic gut dysfunction: From bench to bedside. Am J Gastroenterol Suppl 1:2–8CrossRefGoogle Scholar
  18. 18.
    Czogalla B, Schmitteckert S, Houghton LA et al (2015) A meta-analysis of immunogenetic case-control association studies in irritable bowel syndrome. Neurogastroenterol Motil 27:717–727CrossRefPubMedGoogle Scholar
  19. 19.
    Cremon C, Gargano L, Morselli-Labate AM et al (2009) Mucosal immune activation in irritable bowel syndrome: Gender-dependence and association with digestive symptoms. Am J Gastroenterol 104:392–400CrossRefPubMedGoogle Scholar
  20. 20.
    Dothel G, Barbaro MR, Boudin H et al (2015) Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 148:1002–1011CrossRefPubMedGoogle Scholar
  21. 21.
    Ek WE, Reznichenko A, Ripke S et al (2015) Exploring the genetics of irritable bowel syndrome: A GWA study in the general population and replication in multinational case-control cohorts. Gut 64:1774–1782CrossRefPubMedGoogle Scholar
  22. 22.
    El-Salhy M (2012) Irritable bowel syndrome: Diagnosis and pathogenesis. World J Gastroenterol 18:5151–5163CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    El-Salhy M, Gilja OH, Gundersen D et al (2014) Duodenal Chromogranin A cell density as a Biomarker for the diagnosis of irritable bowel syndrome. Gastroenterol Res Pract 462856. doi: 10.1155/2014/462856
  24. 24.
    El-Salhy M, Hatlebakk JG, Gilja OH et al (2015) Densities of rectal peptide YY and somatostatin cells as biomarkers for the diagnosis of irritable bowel syndrome. Peptides 67:12–19CrossRefPubMedGoogle Scholar
  25. 25.
    Gonlachanvit S, Mahayosnond A, Kullavanijaya P (2009) Effects of chili on postprandial gastrointestinal symptoms in diarrhoea predominant irritable bowel syndrome: Evidence for capsaicin-sensitive visceralnociception hypersensitivity. Neurogastroenterol Motil 21:23–32CrossRefPubMedGoogle Scholar
  26. 26.
    Guarino MP, Barbara G, Cicenia A et al (2016) Supernatants of irritable bowel syndrome mucosal biopsies impair human colonic smooth muscle contractility. Neurogastroenterol Motil. doi: 10.1111/nmo.12928 Google Scholar
  27. 27.
    Gupta S (2016) Infectious disease: Something in the water. Nature 533:114–115CrossRefGoogle Scholar
  28. 28.
    Hammer J, Führer M, Pipal L et al (2008) Hypersensitivity for capsaicin in patients with functional dyspepsia. Neurogastroenterol Motil 20:125–133PubMedGoogle Scholar
  29. 29.
    Hausken T, Berstad A (1992) Wide gastric antrum in patients with non-ulcer dyspepsia. Effect of cisapride. Scand J Gastroenterol 27:427–432CrossRefPubMedGoogle Scholar
  30. 30.
    Henström M, Diekmann L, Bonfiglio F et al (2016) Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. Gut. doi: 10.1136/gutjnl-2016-312456 Google Scholar
  31. 31.
    Hughes PA, Harrington AM, Castro J et al (2013) Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 62:1456–1465CrossRefPubMedGoogle Scholar
  32. 32.
    Kourikou A, Karamanolis GP, Dimitriadis GD et al (2015) Gene polymorphisms associated with functional dyspepsia. World J Gastroenterol 21:7672–7682CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lacy BE, Mearin F, Chang L et al (2016) Bowel disorders. Gastroenterology 150:1393–1407CrossRefGoogle Scholar
  34. 34.
    Larsson MH, Simren M, Thomas EA et al (2007) Elevated motility-related transmucosal potential difference in the upper small intestine in their irritable bowel syndrome. Neurogastroenterol Motil 19:812–820CrossRefPubMedGoogle Scholar
  35. 35.
    Layer P, Andresen V, Pehl C, Allescher H, Bischoff SC, Classen M, Enck P, Frieling T, Haag S, Holtmann G, Karaus M, Kathemann S, Keller J, Kuhlbusch-Zicklam R, Kruis W, Langhorst J, Matthes H, Mönnikes H, Müller-Lissner S, Musial F, Otto B, Rosenberger C, Schemann M, van der Voort I, Dathe K, Preiss JC (2011) Irritable bowel syndrome: German consensus guidelines on definition, pathophysiology and management. Z Gastroenterol 49:237–293CrossRefPubMedGoogle Scholar
  36. 36.
    Lee KJ, Tack J (2010) Duodenal Implications in the Pathophysiology of Functional Dyspepsia. J Neurogastroenterol Motil 16:251–257CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mayer EA, Gupta A, Kilpatrick LA et al (2015) Imaging brain mechanisms in chronic visceral pain. Pain 156:50–63CrossRefGoogle Scholar
  38. 38.
    Mearin F, Cucala M, Azpiroz F et al (1991) The origin of symptoms on the brain-gut axis in functional dyspepsia. Gastroenterology 101:999–1006CrossRefPubMedGoogle Scholar
  39. 39.
    Mertz H, Naliboff B, Munakata J et al (1995) Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology 109:40–52CrossRefPubMedGoogle Scholar
  40. 40.
    Munakata J, Naliboff B, Harraf F et al (1997) Repetitive sigmoid stimulation induces rectal hyperalgesia in patients with irritable bowel syndrome. Gastroenterology 112:55–63CrossRefPubMedGoogle Scholar
  41. 41.
    Ostertag D, Buhner S, Michel K et al (2015) Reduced responses of Submucous neurons from irritable bowel syndrome patients to a cocktail containing histamine, serotonin, TNFα, and Tryptase (IBS-cocktail). Front Neurosci 9:465CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Oustamanolakis P, Tack J (2012) Dyspepsia organic versus functional. J Clin Gastroenterol 46:175–190CrossRefPubMedGoogle Scholar
  43. 43.
    Piche T, Barbara G, Aubert P et al (2009) Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: Involvement of soluble mediators. Gut 58:196–201CrossRefPubMedGoogle Scholar
  44. 44.
    Pike BL, Paden KA, Alcala AN et al (2015) Immunological Biomarkers in Postinfectious irritable bowel syndrome. J Travel Med 22:242–250CrossRefPubMedGoogle Scholar
  45. 45.
    Pilichiewicz AN, Feltrin KL, Horowitz M et al (2008) Functional dyspepsia is associated with a greater symptomatic response to fat but not carbohydrate, increased fasting and postprandial CCK, and diminished PYY. Am J Gastroenterol 103:2613–2623CrossRefPubMedGoogle Scholar
  46. 46.
    Scanzi J, Accarie A, Muller E et al (2016) Colonic overexpression of the T‑type calcium channel Cav3.2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients. Neurogastroenterol Motil 28:1632–1640CrossRefPubMedGoogle Scholar
  47. 47.
    Schemann M, Camilleri M (2013) Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 144:698–704CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Serra J, Azpiroz F, Malagelada JR (1995) Perception and reflex responses to intestinal distention in humans are modified by simultaneous or previous stimulation. Gastroenterology 109:1742–1749CrossRefPubMedGoogle Scholar
  49. 49.
    Spiller R, Lam C (2012) An update on post-infectious irritable bowel syndrome: role of genetics, immune activation, serotonin and altered Microbiome. J Neurogastroenterol Motil 18:258–268CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Stanghellini V, Chan F, Hasler WL et al (2016) Gastroduodenal disorders. Gastroenterology 150:1380–1392CrossRefPubMedGoogle Scholar
  51. 51.
    Swan C, Duroudier NP, Campbell E et al (2013) Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): Association with TNFSF15 and TNFα. Gut 62:985–994CrossRefPubMedGoogle Scholar
  52. 52.
    Talley NJ, Ford AC (2015) Functional dyspepsia. N Engl J Med 373:1853–1863. doi: 10.1056/NEJMra1501505 CrossRefPubMedGoogle Scholar
  53. 53.
    Tanaka F, Tominaga K, Fujikawa Y et al (2016) Concentration of Glial cell line-derived Neurotrophic factor positively correlates with symptoms in functional dyspepsia. Dig Dis Sci 61:3478–3485CrossRefPubMedGoogle Scholar
  54. 54.
    van Wanrooij SJM, Wouters MM, Van Oudenhove L et al (2014) Sensitivity testing in Irritable Bowel Syndrome with rectal capsaicin stimulations: Role of TRPV1 upregulation and sensitization in visceral hypersensitivity. Am J Gastroenterol 109:99–109CrossRefPubMedGoogle Scholar
  55. 55.
    Van Oudenhove L, Törnblom H, Störsrud S et al (2016) Depression and Somatization are associated with increased postprandial symptoms in patients with irritable bowel syndrome. Gastroenterology 150:866–874CrossRefPubMedGoogle Scholar
  56. 56.
    Whitehead WE, Holtkotter B, Enck P et al (1990) Tolerance for rectosigmoid distention in irritable bowel syndrome. Gastroenterology 98:1187–1192CrossRefPubMedGoogle Scholar
  57. 57.
    Witte AB, Walker MM, Talley NJ et al (2016) Decreased number of duodenal endocrine cells with unaltered serotonin-containing cells in functional dyspepsia. Am J Gastroenterol 111:1853–1854CrossRefGoogle Scholar
  58. 58.
    Wouters MM, Balemans D, Van Wanrooy S et al (2016) Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology 150:875–887CrossRefPubMedGoogle Scholar
  59. 59.
    Zhou Q, Zhang B, Verne GN (2009) Intestinal membrane permeability and hypersensitivityin the irritable bowel syndrome. Pain 146:41–46CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  1. 1.Lehrstuhl für HumanbiologieTechnische Universität MünchenFreisingDeutschland

Personalised recommendations