Skip to main content
Log in

An analytical hierarchy process-based approach to solve the multi-objective multiple traveling salesman problem

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

We consider the problem of assigning a team of autonomous robots to target locations in the context of a disaster management scenario while optimizing several objectives. This problem can be cast as a multiple traveling salesman problem, where several robots must visit designated locations. This paper provides an analytical hierarchy process (AHP)-based approach to this problem, while minimizing three objectives: the total traveled distance, the maximum tour, and the deviation rate. The AHP-based approach involves three phases. In the first phase, we use the AHP process to define a specific weight for each objective. The second phase consists in allocating the available targets, wherein we define and use three approaches: market-based, robot and task mean allocation-based, and balanced-based. Finally, the third phase involves the improvement in the solutions generated in the second phase. To validate the efficiency of the AHP-based approach, we used MATLAB to conduct an extensive comparative simulation study with other algorithms reported in the literature. The performance comparison of the three approaches shows a gap between the market-based approach and the other two approaches of up to 30%. Further, the results show that the AHP-based approach provides a better balance between the objectives, as compared to other state-of-the-art approaches. In particular, we observed an improvement in the total traveled distance when using the AHP-based approach in comparison with the distance traveled when using a clustering-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alexis K, Darivianakis G, Burri M, Siegwart R (2016) Aerial robotic contact-based inspection: planning and control. Auton Robots 40(4):631–655. https://doi.org/10.1007/s10514-015-9485-5

    Article  Google Scholar 

  2. Bektas T (2006) The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3):209–219

    Article  MathSciNet  Google Scholar 

  3. Bolaños R, Echeverry M, Escobar J (2015) A multiobjective non-dominated sorting genetic algorithm (NSGA-II) for the multiple traveling salesman problem. Dec Sci Lett 4(4):559–568

    Article  Google Scholar 

  4. Brown EC, Ragsdale CT, Carter AE (2007) A grouping genetic algorithm for the multiple traveling salesperson problem. Int J Inf Technol Dec Mak 6(02):333–347

    Article  Google Scholar 

  5. Carter AE, Ragsdale CT (2006) A new approach to solving the multiple traveling salesperson problem using genetic algorithms. Eur J Oper Res 175(1):246–257. https://doi.org/10.1016/j.ejor.2005.04.027

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaari I, Koubaa A, Bennaceur H, Trigui S, Al-Shalfan K (2012) Smartpath: a hybrid ACO-GA algorithm for robot path planning. In: 2012 IEEE congress on evolutionary computation, pp 1–8. https://doi.org/10.1109/CEC.2012.6256142

  7. Chaari I, Koubaa A, Trigui S, Bennaceur H, Ammar A, Al-Shalfan K (2014) Smartpath: an efficient hybrid aco-ga algorithm for solving the global path planning problem of mobile robots. Int J Adv Robot Syst 11(7):94. https://doi.org/10.5772/58543

    Article  Google Scholar 

  8. Chan ZS, Collins L, Kasabov N (2006) An efficient greedy k-means algorithm for global gene trajectory clustering. Expert Syst Appl 30(1):137–141. https://doi.org/10.1016/j.eswa.2005.09.049

    Article  Google Scholar 

  9. Cheikhrouhou O, Koubaa A, Bennaceur H (2014) Move and improve: a distributed multi-robot coordination approach for multiple depots multiple travelling salesmen problem. In: 2014 IEEE international conference on autonomous robot systems and competitions (ICARSC), pp 28–35. https://doi.org/10.1109/ICARSC.2014.6849758

  10. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  11. Elango M, Nachiappan S, Tiwari MK (2011) Balancing task allocation in multi-robot systems using k-means clustering and auction based mechanisms. Expert Syst Appl 38(6):6486–6491. https://doi.org/10.1016/j.eswa.2010.11.097

    Article  Google Scholar 

  12. Falkenauer E (1992) The grouping genetic algorithms widening the scope of the GAs, jorbel. Belg J Oper Res Stat Comput Sci 33:79–102

    MATH  Google Scholar 

  13. Ghafurian S, Javadian N (2011) An ant colony algorithm for solving fixed destination multi-depot multiple traveling salesmen problems. Appl Soft Comput 11(1):1256–1262. https://doi.org/10.1016/j.asoc.2010.03.002

    Article  Google Scholar 

  14. Gutin G, Punnen AP (2006) The traveling salesman problem and its variations, vol 12. Springer, New York

    MATH  Google Scholar 

  15. Heap B, Pagnucco M (2012) Repeated sequential auctions with dynamic task clusters. In: Proceedings of the twenty-sixth AAAI conference on artificial intelligence, AAAI’12. AAAI Press, pp 1997–2002. http://dl.acm.org/citation.cfm?id=2900929.2901010

  16. Helsgaun K (2012) LKH. http://www.akira.ruc.dk/~keld/research/LKH/. Accessed 2012

  17. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  18. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department

  19. Ke L, Zhang Q, Battiti R (2013) MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and antcolony. IEEE Trans Cybern 43(6):1845–1859. https://doi.org/10.1109/TSMCB.2012.2231860

    Article  Google Scholar 

  20. Király A, Abonyi J (2011) Optimization of multiple traveling salesmen problem by a novel representation based genetic algorithm. Springer, Berlin, pp 241–269. https://doi.org/10.1007/978-3-642-21705-0_9

    Book  Google Scholar 

  21. Kirk J (2011) Traveling-salesman-problem-genetic-algorithm. http://www.mathworks.com/matlabcentral/fileexchange/13680-traveling-salesman-problem-genetic-algorithm. Accessed 11 July 2011

  22. Kivelevitch E (2011) Mdmtspv\_ga-multiple depot multiple traveling salesmen problem solved by genetic algorithm. http://www.mathworks.com/matlabcentral/fileexchange/31814-mdmtspv-ga-multiple-depot-multiple-traveling-salesmen-problem-solved-by-genetic-algorithm. Accessed 15 June 2011

  23. Kivelevitch E, Cohen K, Kumar M (2013) A market-based solution to the multiple traveling salesmen problem. J Intell Robot Syst 72(1):21–40. https://doi.org/10.1007/s10846-012-9805-3

    Article  Google Scholar 

  24. Koubâa A, Trigui S, Châari I (2012) Indoor surveillance application using wireless robots and sensor networks: coordination and path planning. In: Mobile ad hoc robots and wireless robotic systems: design and implementation, pp 19–57

  25. Li J, Sun Q, Zhou M, Dai X (2013) A new multiple traveling salesman problem and its genetic algorithm-based solution. In: 2013 IEEE international conference on systems, man, and cybernetics, pp 627–632. https://doi.org/10.1109/SMC.2013.112

  26. Liu W, Li S, Zhao F, Zheng A (2009) An ant colony optimization algorithm for the multiple traveling salesmen problem. In: 2009 4th IEEE conference on industrial electronics and applications, pp 1533–1537. https://doi.org/10.1109/ICIEA.2009.5138451

  27. Lust T, Teghem J (2010) The multiobjective traveling salesman problem: a survey and a new approach. Springer, Berlin, pp 119–141. https://doi.org/10.1007/978-3-642-11218-8_6

    Book  MATH  Google Scholar 

  28. Mehrabian A, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003

    Article  Google Scholar 

  29. Miettinen K (1999) Nonlinear multiobjective optimization. Springer, New York

    MATH  Google Scholar 

  30. Peng W, Zhang Q, Li H (2009) Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem. Springer, Berlin, pp 309–324. https://doi.org/10.1007/978-3-540-88051-6_14

    Book  MATH  Google Scholar 

  31. Punnen AP (2007) The traveling salesman problem: applications, formulations and variations. Springer, Boston, pp 1–28. https://doi.org/10.1007/0-306-48213-4_1

    Book  MATH  Google Scholar 

  32. Saaty R (1987) The analytic hierarchy process: what it is and how it is used. Math Model 9(3–5):161–176. https://doi.org/10.1016/0270-0255(87)90473-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Shim VA, Tan KC, Cheong CY (2012) A hybrid estimation of distribution algorithm with decomposition for solving the multiobjective multiple traveling salesman problem. IEEE Trans Syst Man Cybern Part C (Appl Rev) 42(5):682–691. https://doi.org/10.1109/TSMCC.2012.2188285

    Article  Google Scholar 

  34. Shim VA, Tan KC, Tan KK (2012) A hybrid estimation of distribution algorithm for solving the multi-objective multiple traveling salesman problem. In: 2012 IEEE congress on evolutionary computation, pp 1–8. https://doi.org/10.1109/CEC.2012.6256438

  35. Shuai Y, Bradley S, Shoudong H, Dikai L (2013) A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms. Eur J Oper Res 228:72–82

    Article  MathSciNet  Google Scholar 

  36. Singh A, Baghel AS (2009) A new grouping genetic algorithm approach to the multiple traveling salesperson problem. Soft Comput 13(1):95–101. https://doi.org/10.1007/s00500-008-0312-1

    Article  Google Scholar 

  37. Singh H, Kaur R (2013) Resolving multiple traveling salesman problem using genetic algorithms. Int J Comput Sci Eng 3(2):209–212

    Google Scholar 

  38. Singh S, Lodhi EA (2014) Comparison study of multiple traveling salesmen problem using genetic algorithm. Int J Comput Sci Netw Secur (IJCSNS) 14(7):107–110

    Google Scholar 

  39. Trigui S, Cheikhrouhou O, Koubaa A, Baroudi U, Youssef H (2016) FL-MTSP: a fuzzy logic approach to solve the multi-objective multiple traveling salesman problem for multi-robot systems. Soft Comput. https://doi.org/10.1007/s00500-016-2279-7

    Article  Google Scholar 

  40. Trigui S, Koubaa A, Cheikhrouhou O, Qureshi B, Youssef H (2016) A clustering market-based approach for multi-robot emergency response applications. In: 2016 International conference on autonomous robot systems and competitions (ICARSC), pp 137–143. https://doi.org/10.1109/ICARSC.2016.14

  41. Venkatesh P, Singh A (2015) Two metaheuristic approaches for the multiple traveling salesperson problem. Appl Soft Comput 26:74–89. https://doi.org/10.1016/j.asoc.2014.09.029

    Article  Google Scholar 

  42. Viguria A, Howard AM (2009) An integrated approach for achieving multirobot task formations. IEEE/ASME Trans Mechatron 14(2):176–186. https://doi.org/10.1109/TMECH.2009.2014056

    Article  Google Scholar 

  43. Wang X, Liu D, Hou M (2013) A novel method for multiple depot and open paths, multiple traveling salesmen problem. In: 2013 IEEE 11th international symposium on applied machine intelligence and informatics (SAMI), pp 187–192. https://doi.org/10.1109/SAMI.2013.6480972

  44. Xu Z, Li Y, Feng X (2008) Constrained multi-objective task assignment for UUVs using multiple ant colonies system. In: 2008 ISECS international colloquium on computing, communication, control, and management, vol 1, pp 462–466. https://doi.org/10.1109/CCCM.2008.318

  45. Yong W (2015) Hybrid max–min ant system with four vertices and three lines inequality for traveling salesman problem. Soft Comput 19(3):585–596. https://doi.org/10.1007/s00500-014-1279-8

    Article  Google Scholar 

  46. Yousefikhoshbakht M, Didehvar F, Rahmati F (2013) Modification of the ant colony optimization for solving the multiple traveling salesman problem. Rom Acad Sect Inf Sci Technol 16(1):65–80

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Center of Excellence and the Robotics and Internet-of-Things Unit at Prince Sultan University, Saudi Arabia, for their support of this work. The work is also supported by Gaitech Robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Trigui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trigui, S., Cheikhrouhou, O., Koubaa, A. et al. An analytical hierarchy process-based approach to solve the multi-objective multiple traveling salesman problem. Intel Serv Robotics 11, 355–369 (2018). https://doi.org/10.1007/s11370-018-0259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-018-0259-8

Keywords

Navigation