Skip to main content
Log in

Real-time optical SLAM-based mosaicking for unmanned underwater vehicles

  • Special Issue
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This article discusses the possibility of building in real-time a mosaic of the seafloor relying on a simultaneous localization and mapping (SLAM) framework. The goal is to provide an unmanned underwater vehicle with a relatively rough visual map of the seafloor to support basic navigation and context awareness. To achieve that goal, an accurate estimation of the location of the visual landmarks and, in particular, the correct data association when a visual landmark is re-visited by the vehicle are the crucial points. Instead of using a global mosaic, this work uses the combination of a set of local mosaics constructed in the vicinity of the SLAM visual landmarks. The contributions of this article are mainly the use of SURF features, the local mosaics approach and the real-time capability. The use of SURF features allows eliminating false positives in the data association of SLAM visual landmarks. The local mosaics approach is an effective way of correcting the effects of the drift on the mosaic in real time. The main contribution is the real-time capability as it will be seen. The algorithm was tested using a batch of experimental data in typical operating conditions and the results prove the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping (slam): part ii. Robotics Autom Mag IEEE 13(3): 108–117. doi:10.1109/MRA.2006.1678144

    Article  Google Scholar 

  2. Bay H, Tuytelaars T, Gool LV (2006) Surf: speeded up robust features. In: Proceedings of the 9th European conference on computer vision, part 1, vol 3951. Springer LNCS, Berlin, pp 404–417

  3. Bosse M, Newman P, Leonard J, Teller S (2004) Simultaneous localization and map building in large-scale cyclic environments using the atlas framework. Int J Robotics Res 23(12): 1113–1139

    Article  Google Scholar 

  4. Caccia M (2006) Vision-based SLAM for ROVs: preliminary experimental results. In: Proc. of 7th IFAC conference on manoeuvring and control of marine craft, Lisbon, Portugal

  5. Caccia M (2007) Vision-based ROV horizontal motion control: near-seafloor experimental results. Control Eng Pract 15(6): 703–714

    Article  Google Scholar 

  6. Caccia M, Bruzzone G, Ferreira F, Veruggio G (2009) Online video mosaicking through slam for rovs. In: OCEANS 2009-EUROPE, 2009. OCEANS ’09, pp 1–6. doi:10.1109/OCEANSE.2009.5278217

  7. Cornelis N, Van Gool L (2008) Fast scale invariant feature detection and matching on programmable graphics hardware. In: Computer vision and pattern recognition workshops, 2008. CVPRW ’08. IEEE Computer Society Conference, pp 1–8. doi:10.1109/CVPRW.2008.4563087

  8. Dissanayake M, Newman P, Clark S, Durrant-Whyte H, Csorba M (2001) A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transact Robotics Autom 17(3): 229–241

    Article  Google Scholar 

  9. Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part i. Robotics Autom Mag IEEE 13(2): 99–110. doi:10.1109/MRA.2006.1638022

    Article  Google Scholar 

  10. Eustice R, Pizarro O, Singh H, Ma WH (2004) Visually augmented navigation in an unstructured environment using a delayed state history. In: Proc. IEEE int. conf. on robotics and automation, pp 25–32

  11. Eustice R, Pizarro O, Singh H (2008) Visually augmented navigation for autonomous underwater vehicles. IEEE J Ocean Eng 33(2): 103–122

    Article  Google Scholar 

  12. Fairfield N, Kantor G, Wettergreen D (2005) Three dimensional evidence grids for SLAM in complex underwater environments. In: Proc. of 14th international symposium of unmanned untethered submersible technology (UUST), AUSI, New Hampshire

  13. Fairfield N, Kantor GA, Jonak D, Wettergreen D (2010) Segmented slam in three-dimensional environments. J Field Robotics 27(1): 85–103

    Article  Google Scholar 

  14. Ferreira F, Veruggio G, Caccia M, Bruzzone G (2009) Speeded up robust features for vision-based underwater motion estimation and slam: comparison with correlation-based techniques. In: Proceedings of MCMC’2009

  15. Ferreira F, Orsenigo F, Veruggio G, Pavlakis P, Caccia M, Bruzzone G (2010) Comparison between feature-based and phase correlation methods for ROV vision-based speed estimation. In: 7th symposium on intelligent autonomous vehicles. IFAC, Lecce

  16. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24: 381–395. doi:10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  17. Garcia R, Puig J, Ridao P, Cufi X (2002) Augmented state kalman filtering for auv navigation. In: Robotics and automation, 2002. Proceedings. ICRA ’02. IEEE international conference, vol 4, pp 4010–4015. doi:10.1109/ROBOT.2002.1014362

  18. Garcia R, Cufi X, Carreras M, Ridao P (2003a) Correction of shading effects in vision-based uuv localization. In: Robotics and automation, 2003. Proceedings. ICRA ’03. IEEE international conference, vol 1, pp 989–994. doi:10.1109/ROBOT.2003.1241721

  19. Garcia R, Nicosevici T, Ridao P, Ribas D (2003b) Towards a real-time vision-based navigation system for a small-class uuv. In: Intelligent robots and systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ international conference, vol 1, pp 818–823. doi:10.1109/IROS.2003.1250730

  20. Gracias N, Van der Zwaan S, Bernardino A, Santos-Victor J (2003) Mosaic-based navigation for autonomous underwater vehicles. IEEE J Ocean Eng 28(4): 609–624

    Article  Google Scholar 

  21. Johnson-Roberson M, Pizarro O, Williams SB, Mahon I (2010) Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J Field Robot 27(1): 21–51. doi:10.1002/rob.v27:1

    Article  Google Scholar 

  22. Kudzinava M (2007) Feature-based matching of underwater images. Master’s thesis, University of Girona

  23. Leonard J, Durrant-Whyte H (1991) Simultaneous map building and localization for an autonomous mobile robot. In: Intelligent robots and systems ’91. ’Intelligence for Mechanical Systems, Proceedings IROS ’91. IEEE/RSJ international workshop. vol 3, pp 1442–1447. doi:10.1109/IROS.1991.174711

  24. Leonard J, Feder H (2001) Decoupled stochastic mapping. IEEE J Ocean Eng 26(4): 561–571

    Article  Google Scholar 

  25. Lina María Paz JDT, Neira J (2008) Divide and conquer: Ekf slam in o(n). IEEE Transact Robotics 24(5): 1107–1120

    Article  Google Scholar 

  26. Lisien B, Morales D, Silver D, Kantor GA, Rekleitis I, Choset H (2005) The hierarchical atlas. IEEE Transact Robotics 21(1): 473–481

    Article  Google Scholar 

  27. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2): 91–110

    Article  Google Scholar 

  28. Marks R, Rock S, Lee M (1995) Real-time video mosaicking of the ocean floor. IEEE J Ocean Eng 20(3): 229–241

    Article  Google Scholar 

  29. Misu T, Hashimoto T, Ninomiya K (1999) Optical guidance for autonomous landing of spacecraft. IEEE Transact Aerospace Electron Syst 35(2): 459–473

    Article  Google Scholar 

  30. Mozos OM, Gil A, Ballesta M, Reinoso O (2007) Interest point detectors for visual slam. Tech. rep., LNAI 4788, pp 170–179

  31. Negahdaripour S, Xu X (2002) Mosaic-based positioning and improved motion-estimation methods for automatic navigation of submersible vehicles. IEEE J Ocean Eng 27(1): 79–99

    Article  Google Scholar 

  32. Piniés P, Tardós JD (2008) Large scale slam building conditionally independent local maps: Application to monocular vision. IEEE Transact Robotics 24(5): 1094–1106

    Article  Google Scholar 

  33. Pizarro O, Eustice R, Singh H (2009) Large area 3-d reconstructions from underwater optical surveys. IEEE J Ocean Eng 34(2): 150–169

    Article  Google Scholar 

  34. Ribas D, Ridao P, Tardós JD, Neira J (2008) Underwater slam in man-made structured environments. J Field Robotics 25(11–12): 898–921. doi:10.1002/rob.v25:11/12

    Article  Google Scholar 

  35. Richmond K (2009) Real-time visual mosaicking and navigation on the seafloor. PhD thesis, Stanford University

  36. Richmond K, Rock S (2005) A real-time visual mosaicking and navigation system. In: Proceedings of the unmanned untethered submersible technology conference (UUST), Durham

  37. Richmond K, Rock S (2007a) An operational real-time large-scale visual mosaicking and navigation system. Sea Technol 48:10–13

    Google Scholar 

  38. Richmond K, Rock S (2007b) Real-time visual mosaicking and navigation of the uss macon. In: Proceedings of the unmanned untethered submersible technology conference (UUST), Durham

  39. Roman CN, Singh H (2007) A self-consistent bathymetric mapping algorithm. J Field Robotics 24(1–2): 23–50

    Article  Google Scholar 

  40. Ruiz I, de Raucourt S, Petillot Y, Lane D (2004) Concurrent mapping and localization using sidescan sonar. IEEE J Ocean Eng 29(2): 442–456

    Article  Google Scholar 

  41. Sinha S, Frahm JM, Pollefeys M, Genc Y (2007) Feature tracking and matching in video using programmable graphics hardware. Mach Vis Appl. doi:10.1007/s00138-007-0105-z

  42. Smith RC, Cheeseman P (1987) On the representation and estimation of spatial uncertainly. Int J Robotics Res 5(4): 56–68. doi:10.1177/027836498600500404

    Google Scholar 

  43. Thomas SJ (2008) Real-time stereo visual slam. Master’s thesis, Heriot-Watt University, Universitat de Girona, Universite de Bourgogne

  44. Thrun S, Fox D, Burgard W (1998) A probabilistic approach to concurrent mapping and localization for mobile robots. Mach Learn 31:29–53; also appeared in Autonom Robots 5:253–271 (joint issue)

    Google Scholar 

  45. Thrun S, Burgard W, Fox D (2005) Probablistic robotics. Intelligent robotics and autonomous agents. The MIT Press, Cambridge

    Google Scholar 

  46. Vincent A, Pessel N, Borgetto M, Jouffroy J, Opderbecke J, Rigaud V (2003) Real-time geo-referenced video mosaicking with the matisse system. In: OCEANS 2003. Proceedings, vol 4, pp 2319–2324. doi:10.1109/OCEANS.2003.178271

  47. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Computer vision and pattern recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE computer society conference, vol 1, pp I-511–I-518. doi:10.1109/CVPR.2001.990517

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Ferreira.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (WMV 805 kb)

ESM 2 (WMV 1261 kb)

ESM 3 (WMV 1857 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, F., Veruggio, G., Caccia, M. et al. Real-time optical SLAM-based mosaicking for unmanned underwater vehicles. Intel Serv Robotics 5, 55–71 (2012). https://doi.org/10.1007/s11370-011-0103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-011-0103-x

Keywords

Navigation