Nature and accessibility of organic matter in lacustrine sediment

Abstract

Purpose

Organic matter (OM) in reservoir sediment consists of a range of biomolecules, but their individual contribution to the biogeochemical cycling of carbon and nitrogen nutrients is not documented. This work proposes to investigate whether the nature of the OM determines its accessibility in lacustrine sediment matrix.

Materials and methods

We adapted an OM chemical sequential method developed for soils (particle size ≤ 20 μm) for use on sediments collected from four reservoirs (particle size ≤ 2 mm), coupled with a carbon and nitrogen elementary analysis and colorimetric quantification.

Results

This method allowed for the extraction of more than 70% of carbon and 61% of nitrogen. This OM includes exchangeable, extractable, free particulate, and residual OM, whose carbon content represented < 2%, 64 to 86%, 4 to 16%, and 9 to 24%, respectively. The sum of chemically extracted biochemical molecules that recover the extracted elementary carbon and nitrogen represents the chemically extracted OM. Phenols are the main carbon contributor (55 to 60%), followed by carbohydrates and proteins (14 to 18% and 21 to 29%, respectively). Nitrogen is mainly composed of proteins, amino acids, and ammonium (46 to 56%, 20 to 34%, and 8 to 28%, respectively). Among the four reservoir sediment samples, this same trend applies to the exchangeable and extractable phases: phenols, carbohydrates, and proteins are similarly distributed along the extracted phases, whereas nitrogen, forming as ammonium, amino acids, and nitrogen oxides, exhibits specific distributions.

Conclusion

In reservoir sediments, the nature of the carbon does not impact its physicochemical accessibility; nitrogen material presents more varied profiles depending on its accessibility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alekseev YE, Garnovskii AD, Zhdanov YA (1998) Complexes of natural carbohydrates with metal cations. Russ Chem Rev 67:649–669. https://doi.org/10.1070/RC1998v067n08ABEH000343

    Article  Google Scholar 

  2. Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. In: Advances in Agronomy. Academic Press, pp 155–250. https://doi.org/10.1016/S0065-2113(08)00606-8.

  3. Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P (2013) Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci Rev 123:53–86

  4. Belzile N, Joly HA, Li H (1997) Characterization of humic substances extracted from Canadian lake sediments. Can J Chem 75:14–27. https://doi.org/10.1139/v97-003

    CAS  Article  Google Scholar 

  5. Bingham AH, Cotrufo MF (2016) Organic nitrogen storage in mineral soil: Implications for policy and management. Sci Total Environ 551–552:116–126. https://doi.org/10.1016/j.scitotenv.2016.02.020

    CAS  Article  Google Scholar 

  6. Bremner JM, Lees H (1949) Studies on soil organic matter: Part II. The extraction of organic matter from soil by neutral reagents. J Agric Sci 39:274–279. https://doi.org/10.1017/S0021859600004214

    CAS  Article  Google Scholar 

  7. Bremner JM, Shaw K (1954) Studies on the estimation and decomposition of amino sugars in soil. J Agric Sci 44:152–159. https://doi.org/10.1017/S0021859600046232

    CAS  Article  Google Scholar 

  8. Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107(2):467–485

  9. Cabrera ML, Kissel DE, Vigil MF (2005) Nitrogen mineralization from organic residues. J Environ Qual 34:75–79. https://doi.org/10.2134/jeq2005.0075

    CAS  Article  Google Scholar 

  10. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Sci 330:192–196. https://doi.org/10.1126/science.1186120

    CAS  Article  Google Scholar 

  11. Carstea EM, Bridgeman J, Baker A, Reynolds DM (2016) Fluorescence spectroscopy for wastewater monitoring: A review. Water Res 95:205–219. https://doi.org/10.1016/j.watres.2016.03.021

    CAS  Article  Google Scholar 

  12. Chen M, Hur J (2015) Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review. Water Res 79:10–25. https://doi.org/10.1016/j.watres.2015.04.018

    CAS  Article  Google Scholar 

  13. Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710. https://doi.org/10.1021/es034354c

    CAS  Article  Google Scholar 

  14. Coble PG, Lead J, Baker A et al (2014) Aquatic organic matter fluorescence. Cambridge University Press, Cambridge

    Google Scholar 

  15. Colombo JC, Silverberg N, Gearing JN (1996) Biogeochemistry of organic matter in the Laurentian Trough, II. Bulk composition of the sediments and relative reactivity of major components during early diagenesis. Mar Chem 51:295–314. https://doi.org/10.1016/0304-4203(95)00060-7

    CAS  Article  Google Scholar 

  16. Cui Y, van Duijneveldt JS (2010) Adsorption of polyetheramines on montmorillonite at high pH. Langmuir 26:17210–17217. https://doi.org/10.1021/la103278v

    CAS  Article  Google Scholar 

  17. Delmas D (1980) Minéralisation de la matière organique et échanges ioniques à l’interface eau-sédiment de l’étang de Berre, Méditerranée. Oceanol Acta 3:347–356

    CAS  Google Scholar 

  18. Dijkgraaf PJM, Verkuylen MECG, van der Wiele K (1987) Complexation of calcium ions by complexes of glucaric acid and boric acid. Carbohydr Res 163:127–131. https://doi.org/10.1016/0008-6215(87)80172-6

    CAS  Article  Google Scholar 

  19. Dorodnikov M, Kuzyakov Y, Fangmeier A, Wiesenberg GLB (2011) C and N in soil organic matter density fractions under elevated atmospheric CO2: Turnover vs. stabilization. Soil Biol Biochem 43:579–589. https://doi.org/10.1016/j.soilbio.2010.11.026

    CAS  Article  Google Scholar 

  20. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    CAS  Article  Google Scholar 

  21. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x

    Article  Google Scholar 

  22. Estes ER, Pockalny R, D’Hondt S, Inagaki F, Morono Y, Murray RW, Nordlund D, Spivack AJ, Wankel SD, Xiao N, Hansel CM (2019) Persistent organic matter in oxic subseafloor sediment. Nat Geosci 12(2):126–131

  23. Fanin N, Fromin N, Buatois B, Hättenschwiler S (2013) An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system. Ecol Lett 16:764–772. https://doi.org/10.1111/ele.12108

    Article  Google Scholar 

  24. Flaig W, Beutelspacher H, Rietz E (1975) Chemical composition and physical properties of humic substances. In: Gieseking JE (ed) Soil Components: Vol. 1: Organic Components. Springer, Berlin, Heidelberg, pp 1–211

    Google Scholar 

  25. Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758. https://doi.org/10.1016/0043-1354(95)00323-1

    Article  Google Scholar 

  26. Gale PM, Reddy KR, Graetz DA (1992) Mineralization of sediment organic matter under anoxic conditions. J Environ Qual 21:394–400. https://doi.org/10.2134/jeq1992.00472425002100030015x

    CAS  Article  Google Scholar 

  27. Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal Chem 21:451–467. https://doi.org/10.1016/S0165-9936(02)00603-9

    CAS  Article  Google Scholar 

  28. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115. https://doi.org/10.1016/0304-4203(95)00008-F

    CAS  Article  Google Scholar 

  29. Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Org Geochem 27:319–361. https://doi.org/10.1016/S0146-6380(97)00056-9

    CAS  Article  Google Scholar 

  30. Hobson RP, Page HJ (1932) Studies on the carbon and nitrogen cycles in the soil. VII. The nature of the organic nitrogen compounds of the soil: “Humic” nitrogen. J Agric Sci 22:497. https://doi.org/10.1017/S0021859600054058

    CAS  Article  Google Scholar 

  31. Keiluweit M, Kleber M (2009) Molecular-level interactions in soils and sediments: The role of aromatic π-systems. Environ Sci Technol 43:3421–3429. https://doi.org/10.1021/es8033044

    CAS  Article  Google Scholar 

  32. Kerré B, Bravo CT, Leifeld J, Cornelissen G, Smolders E (2016) Historical soil amendment with charcoal increases sequestration of non-charcoal carbon: a comparison among methods of black carbon quantification: Historical charcoal enhances soil carbon sequestration. Eur J Soil Sci 67:324–331. https://doi.org/10.1111/ejss.12338

    CAS  Article  Google Scholar 

  33. Kim D, Min KJ, Lee K, Yu MS, Park KY (2016) Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environ Eng Res 22:12–18. https://doi.org/10.4491/eer.2016.037

    Article  Google Scholar 

  34. Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochem 85:9–24. https://doi.org/10.1007/s10533-007-9103-5

    Article  Google Scholar 

  35. Klok J (1984) Composition and origin of complex organic matter in recent marine sediments. Delft University Press, Delft, p 126

    Google Scholar 

  36. Knicker H, Hatcher PG (1997) Survival of protein in an organic-rich sediment: Possible protection by encapsulation in organic matter. Naturwissenschaften 84:231–234. https://doi.org/10.1007/s001140050384

    CAS  Article  Google Scholar 

  37. Kögel-Knabner I, Amelung W (2014) Dynamics, chemistry, and preservation of organic matter in soils. In: Treatise on Geochemistry. Elsevier, pp 157–215.

  38. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nat 528:60–68. https://doi.org/10.1038/nature16069

    CAS  Article  Google Scholar 

  39. Leinweber P, Schulten H-R (2000) Nonhydrolyzable forms of soil organic nitrogen: Extractability and composition. J Plant Nutr Soil Sci 163:433–439. https://doi.org/10.1002/1522-2624(200008)163:4<433::AID-JPLN433>3.0.CO;2-F

    CAS  Article  Google Scholar 

  40. Leong LS, Tanner PA (1999) Comparison of methods for determination of organic carbon in marine sediment. Mar Pollut Bull 38:875–879. https://doi.org/10.1016/S0025-326X(99)00013-2

    CAS  Article  Google Scholar 

  41. Lima IBT, Ramos FM, Bambace LAW, Rosa RR (2007) Methane emissions from large dams as renewable energy resources: A developing nation perspective. Mitig Adapt Strateg Glob Chang 13:193–206. https://doi.org/10.1007/s11027-007-9086-5

    Article  Google Scholar 

  42. Liu Z, Lee C (2007) The role of organic matter in the sorption capacity of marine sediments. Mar Chem 105:240–257. https://doi.org/10.1016/j.marchem.2007.02.006

    CAS  Article  Google Scholar 

  43. Lopez-Sangil L, Rovira P (2013) Sequential chemical extractions of the mineral-associated soil organic matter: An integrated approach for the fractionation of organo-mineral complexes. Soil Biol Biochem 62:57–67. https://doi.org/10.1016/j.soilbio.2013.03.004

    CAS  Article  Google Scholar 

  44. Marchand C (2003) Origine et devenir de la matière organique des sédiments de mangroves de Guyane française. - Précurseurs, environnements de dépôt, processus de décomposition et relation avec les métaux lourds. 287

  45. Mattei P, Pastorelli R, Rami G, Mocali S, Giagnoni L, Gonnelli C, Renella G (2017) Evaluation of dredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests, plant growth and microbial community structure. J Hazard Mater 333:144–153. https://doi.org/10.1016/j.jhazmat.2017.03.026

    CAS  Article  Google Scholar 

  46. Mayer L, Schick L, Setchell F (1986) Measurement of protein in nearshore marine sediments. Mar Ecol Prog Ser 30:159–165. https://doi.org/10.3354/meps030159

    CAS  Article  Google Scholar 

  47. McLauchlan KK, Hobbie SE (2004) Comparison of labile soil organic matter fractionation techniques. Soil Sci Soc Am J 68:1616–1625. https://doi.org/10.2136/sssaj2004.1616

    CAS  Article  Google Scholar 

  48. Meyers PA, Ishiwatari R (1995) Organic matter accumulation records in lake sediments. In: Lerman A, Imboden DM, Gat JR (eds) Physics and Chemistry of Lakes. Springer, Berlin Heidelberg, pp 279–328

    Google Scholar 

  49. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking Environmental Change Using Lake Sediments: Physical and Geochemical Methods. Springer Netherlands, Dordrecht, pp 239–269

    Google Scholar 

  50. Michel MC, Hannequart G (1968) Dosage des acides aminés et amines par la ninhydrine. Amélioration pratique Ann Biol anim Bioch Biophys 8:557–563. https://doi.org/10.1051/rnd:19680408

    CAS  Article  Google Scholar 

  51. Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance. Biogeochem 77:25–56. https://doi.org/10.1007/s10533-005-0712-6

    CAS  Article  Google Scholar 

  52. Nakhli SAA, Panta S, Brown JD, Tian J, Imhoff PT (2019) Quantifying biochar content in a field soil with varying organic matter content using a two-temperature loss on ignition method. Sci Total Environ 658:1106–1116. https://doi.org/10.1016/j.scitotenv.2018.12.174

    CAS  Article  Google Scholar 

  53. Nicora CD, Anderson BJ, Callister SJ, Norbeck AD, Purvine SO, Jansson JK, Mason OU, David MM, Jurelevicius D, Smith RD, Lipton MS (2013) Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteom 13:2776–2785. https://doi.org/10.1002/pmic.201300003

    CAS  Article  Google Scholar 

  54. Olk DC, Cassman KG, Fan TWM (1995) Characterization of two humic acid fractions from a calcareous vermiculitic soil: Implications for the humification process. Geoderma 65:195–208. https://doi.org/10.1016/0016-7061(95)94048-9

    CAS  Article  Google Scholar 

  55. Ortueta M, Celaya A, Mijangos F, Muraviev D (2015) Ion exchange synthesis of struvite accompanied by isothermal supersaturation: influence of polymer matrix and functional groups type. Solvent Extr Ion Exch 33:65–74. https://doi.org/10.1080/07366299.2014.951283

    CAS  Article  Google Scholar 

  56. Pansu M, Gautheyrou J (2007) Handbook of soil analysis: Mineralogical, organic and inorganic methods. Springer Science & Business Media, Berlin

    Google Scholar 

  57. Patience RL, Baxby M, Bartle KD, Perry DL, Rees AGW, Rowland SJ (1992) The functionality of organic nitrogen in some recent sediments from the Peru upwelling region. Org Geochem 18:161–169. https://doi.org/10.1016/0146-6380(92)90126-I

    CAS  Article  Google Scholar 

  58. Paul EA (2016) The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol Biochem 98:109–126. https://doi.org/10.1016/j.soilbio.2016.04.001

    CAS  Article  Google Scholar 

  59. Purvaja R, Ramesh R, Ray AK, Rixen T (2008) Nitrogen cycling: A review of the processes, transformations and fluxes in coastal ecosystems. Curr Sci 94:1419–1438

    CAS  Google Scholar 

  60. Qafoku NP, Sumner ME (2001) Retention and transport of calcium nitrate in variable charge subsoils. Soil Sci 166:297–307. https://doi.org/10.1097/00010694-200105000-00001

    CAS  Article  Google Scholar 

  61. Qian P, Schoenau JJ (2002) Availability of nitrogen in solid manure amendments with different C:N ratios. Can J Soil Sci 82:219–225. https://doi.org/10.4141/S01-018

    Article  Google Scholar 

  62. Quiquampoix H, Burns RG (2007) Interactions between proteins and soil mineral surfaces: Environmental and health consequences. Elem 3:401–406. https://doi.org/10.2113/GSELEMENTS.3.6.401

    CAS  Article  Google Scholar 

  63. Rice JA, MacCarthy P (1991) Statistical evaluation of the elemental composition of humic substances. Org Geochem 17:635–648. https://doi.org/10.1016/0146-6380(91)90006-6

    CAS  Article  Google Scholar 

  64. Rillig MC, Caldwell BA, Wösten HAB, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: Controls on persistence. Biogeochem 85:25–44. https://doi.org/10.1007/s10533-007-9102-6

    CAS  Article  Google Scholar 

  65. Roudaut J-P, Gaspard M, Boyer G (2011) Guide des produits organiques utilisables en Languedoc-Roussillon - Tome 1. Lattes

  66. Rowell DM, Prescott CE, Preston CM (2001) Decomposition and nitrogen mineralization from biosolids and other organic materials: Relationship with initial chemistry. J Environ Qual 30:1401–1410. https://doi.org/10.2134/jeq2001.3041401x

    CAS  Article  Google Scholar 

  67. Sawlowicz Z (1993) Pyrite framboids and their development: A new conceptual mechanism. Geol Rundsch 82:148–156. https://doi.org/10.1007/BF00563277

    CAS  Article  Google Scholar 

  68. Schjønning P, Thomsen IK, Møberg JP, de Jonge H, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils: I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89:177–198. https://doi.org/10.1016/S0016-7061(98)00083-4

    Article  Google Scholar 

  69. Schnitzer M (1991) Soil organic matter - The next 75 years. Soil Sci 151:41–58

    Article  Google Scholar 

  70. Schnitzer M, Kodama H (1992) Interactions between organic and inorganic components in particle-size fractions separated from four soils. Soil Sci Soc Am J 56:1099–1105. https://doi.org/10.2136/sssaj1992.03615995005600040015x

    CAS  Article  Google Scholar 

  71. Schulten H-R, Schnitzer M (1998) The chemistry of soil organic nitrogen: A review. Biol Fertil Soils 26:1–15. https://doi.org/10.1007/s003740050335

    CAS  Article  Google Scholar 

  72. Sowden FJ, Chen Y, Schnitzer M (1977) The nitrogen distribution in soils formed under widely differing climatic conditions. Geochim Cosmochim Acta 41:1524–1526. https://doi.org/10.1016/0016-7037(77)90257-5

    CAS  Article  Google Scholar 

  73. Springsteen G, Wang B (2002) A detailed examination of boronic acid–diol complexation. Tetrahedron 58:5291–5300. https://doi.org/10.1016/S0040-4020(02)00489-1

    CAS  Article  Google Scholar 

  74. Stratful I, Scrimshaw MD, Lester JN (2001) Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res 35:4191–4199. https://doi.org/10.1016/S0043-1354(01)00143-9

    CAS  Article  Google Scholar 

  75. Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  76. Van Kessel JS, Reeves JB, Meisinger JJ (2000) Nitrogen and carbon mineralization of potential manure components. J Environ Qual 29:1669–1677. https://doi.org/10.2134/jeq2000.00472425002900050039x

    Article  Google Scholar 

  77. Wada S-I (1997) A rapid and sensitive method for on-site estimation of small amount of carbonate in soils. Soil Sci Plant Nutr 43:45–50. https://doi.org/10.1080/00380768.1997.10414713

    Article  Google Scholar 

  78. Wagener V, Faltz A-S, Killian MS, Schmuki P, Virtanen S (2015) Protein interactions with corroding metal surfaces: comparison of Mg and Fe. Faraday Discuss 180:347–360. https://doi.org/10.1039/C4FD00253A

    CAS  Article  Google Scholar 

  79. Wang X-C, Lee C (1993) Adsorption and desorption of aliphatic amines, amino acids and acetate by clay minerals and marine sediments. Mar Chem 44:1–23. https://doi.org/10.1016/0304-4203(93)90002-6

    CAS  Article  Google Scholar 

  80. Wang WW, Jiang X, Zheng BH, Chen JY, Zhao L, Zhang B, Wang SH (2018) Composition, mineralization potential and release risk of nitrogen in the sediments of Keluke lake, a Tibetan plateau freshwater lake in China. R Soc Open Sci 5:180612. https://doi.org/10.1098/rsos.180612

    CAS  Article  Google Scholar 

  81. Wershaw R (1993) Model for humus in soils and sediments. Environ Sci Technol 27:814–816. https://doi.org/10.1021/es00042a603

    Article  Google Scholar 

  82. Zang X, van Heemst JDH, Dria KJ, Hatcher PG (2000) Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Org Geochem 31:679–695. https://doi.org/10.1016/S0146-6380(00)00040-1

    CAS  Article  Google Scholar 

  83. Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2014) A global boom in hydropower dam construction. Aquat Sci 77:161–170. https://doi.org/10.1007/s00027-014-0377-0

    Article  Google Scholar 

  84. Zepp RG, Sheldon WM, Moran MA (2004) Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation–emission matrices. Mar Chem 89:15–36. https://doi.org/10.1016/j.marchem.2004.02.006

    CAS  Article  Google Scholar 

  85. Zocatelli R, Lavrieux M, Disnar J-R, le Milbeau C, Jacob J, Bréheret JG (2012) Free fatty acids in Lake Aydat catchment soils (French Massif Central): sources, distributions and potential use as sediment biomarkers. J Soils Sediments 12:734–748. https://doi.org/10.1007/s11368-012-0505-1

    CAS  Article  Google Scholar 

Download references

Acknowledgment

We thank to Roland Redon, Stéphane Mounier, and Houssam Hajjoul from PROTEE laboratory of Toulon University for PARAFAC calculations. The authors would like to thank the Limoges University Foundation and EDF Hydro Center for their financially support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michel Baudu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Haihan Zhang

Supplementary Information

ESM 1

(DOCX 1186 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bascle, S., Bourven, I. & Baudu, M. Nature and accessibility of organic matter in lacustrine sediment. J Soils Sediments 21, 1504–1522 (2021). https://doi.org/10.1007/s11368-021-02888-0

Download citation

Keywords

  • Lacustrine sediment;
  • Organic matter;
  • Sequential extraction;
  • Nitrogen and carbon nature;
  • Organo-mineral interactions