Heteroaggregation of humic acid with montmorillonite in divalent electrolytes: effects of humic acid content and ionic concentration

Abstract

Purpose

Clay-humic substance complexes play a major role in controlling the mobility of elements and colloids in natural soils. The purpose of the present study is to explore the different reaction mechanisms induced by cations on the humic acid (HA) and montmorillonite (Mt) heteroaggregation and to analyze the binding mechanism of HA-Mt.

Materials and methods

HA is extracted from soil and colloidal Mt are prepared as K+-saturated. The aggregation kinetics of HA-Mt composite nanoparticles in Ca(NO3)2, Mg(NO3)2, and Cu(NO3)2 solutions were detected by dynamic light scattering. Furthermore, FT-IR spectroscopy was used to characterize the reactive sites involved in interaction with the metal ions.

Results and discussion

The results revealed that the order of reaction of these three metal cations with the HA-Mt composite was Cu2+ > Ca2+ > Mg2+, as evident from the total average aggregation rate, critical coagulation concentration, and activation energy. The heteroaggregation process was sensitive to the 1% mass percentage of HA; however, more HA (4% mass percentage) did not significantly affect this process compared with 1% HA. Higher cation concentration and higher HA content (10% mass percentage) were two necessary conditions for promoting HA-Mt heteroaggregation. The vibration peak intensities of the carboxyl group C-O bonds and hydroxyl group O-H bonds of HA were affected by the formation of coordinate bonds with different metal ions.

Conclusions

Metal cations were preferentially complexed by the carboxyl groups of HA, and due to its polarization-induced and electric field–enhanced oxidizing properties, Cu2+ has the strongest aggregation ability for HA-Mt, followed by Ca2+ and Mg2+. The HA-Mt heteroaggregation is partially reversible by adjusting electrostatic repulsion. The results of this study improve our understanding of the roles of cations and HA in clay-humic substance interactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abollino O, Giacomino A, Malandrino M, Mentasti E (2008) Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci 38:227–236. https://doi.org/10.1016/j.clay.2007.04.002

    CAS  Article  Google Scholar 

  2. Ahmat AM, Thiebault T, Guégan R (2019) Phenolic acids interactions with clay minerals: a spotlight on the adsorption mechanisms of gallic acid onto montmorillonite. Appl Clay Sci 180:10588. https://doi.org/10.1016/j.clay.2019.105188

    CAS  Article  Google Scholar 

  3. Balomenou G, Stathi P, Enotiadis A, Gournis D, Deligiannakis Y (2008) Physicochemical study of amino-functionalized organosilicon cubes intercalated in montmorillonite clay: H-binding and metal uptake. J Cloid and Iterf Sci 325:74–83. https://doi.org/10.1016/j.jcis.2008.04.072

    CAS  Article  Google Scholar 

  4. Benjamin MM, Leckie JO (1981) Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interface Sci 79:209–221. https://doi.org/10.1016/0021-9797(81)90337-4

    CAS  Article  Google Scholar 

  5. Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface 140:114–131. https://doi.org/10.1016/j.cis.2007.12.008

    CAS  Article  Google Scholar 

  6. Borgnino L (2013) Experimental determination of the colloidal stability of Fe (III)-montmorillonite: effects of organic matter, ionic strength and pH conditions. Colloid Surfaces A 423:178–187. https://doi.org/10.1016/j.colsurfa.2013.01.065

    CAS  Article  Google Scholar 

  7. Chen HF, Koopal LK, Xiong J, Avena M, Tan WF (2017) Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. J Colloid Interface Sci 504:457–467. https://doi.org/10.1016/j.jcis.2017.05.078

    CAS  Article  Google Scholar 

  8. Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. Soil Sci Soc Am J 64:1479–1486. https://doi.org/10.2136/sssaj2000.6441479x

    CAS  Article  Google Scholar 

  9. Cheshire MV, Dumat C, Fraser AR, Hillier S, Staunton S (2000) The interaction between soil organic matter and soil clay minerals by selective removal and controlled addition of organic matter. Eur J Soil Sci 51:497–509. https://doi.org/10.1111/j.1365-2389.2000.00325.x

    Article  Google Scholar 

  10. de Pablo L, Chávez ML, Abatal M (2011) Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite. Chem Eng J 171:1276–1286. https://doi.org/10.1016/j.cej.2011.05.055

    CAS  Article  Google Scholar 

  11. Derrendinger L, Sposito G (2000) Flocculation kinetics and cluster morphology in illite/NaCl suspensions. J Colloid Interface Sci 222:1–11. https://doi.org/10.1006/jcis.1999.6606

    CAS  Article  Google Scholar 

  12. Dong HR, Lo IMC (2013) Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Res 47:419–427. https://doi.org/10.1016/j.watres.2012.10.013

    CAS  Article  Google Scholar 

  13. Dupuy N, Douay F (2001) Infrared and chemometrics study of the interaction between heavy metals and organic matter in soils. Spectrochim Acta A 57:1037–1047. https://doi.org/10.1016/S1386-1425(00)00420-0

    Article  Google Scholar 

  14. Evanko CR, Dzombak DA (1998) Influence of structural features on sorption of NOM-analogue organic acids to goethite. Environ Sci Technol 32:2846–2855. https://doi.org/10.1021/es980256t

    CAS  Article  Google Scholar 

  15. Fletcher P, Sposito G (1989) The chemical modeling of clay/electrolyte interactions for montmorillonite. Clay Miner 24:375–391. https://doi.org/10.1180/claymin.1989.024.2.14

    CAS  Article  Google Scholar 

  16. Gao XD, Yang G, Tian R, Ding WQ, Hu FN, Liu XM, Li H (2015) Formation of sandwich structure through ion adsorption at the mineral and humic interfaces: a combined experimental computational study. J Mol Struct 1093:96–100. https://doi.org/10.1016/j.molstruc.2015.03.060

    CAS  Article  Google Scholar 

  17. Gao XD, Tian R, Liu XM, Zhu HL, Tang Y, Xu CY, Shah GM, Li H (2019) Specific ion effects of Cu2+, Ca2+ and Mg2+ on montmorillonite aggregation. Appl Clay Sci 179:105154. https://doi.org/10.1016/j.clay.2019.105154

    CAS  Article  Google Scholar 

  18. González Pérez M, Martin-Neto L, Saab SC, Novotny EH, Milori DMBP, Bagnato VS, Colnago LA, Melo WJ, Knicker H (2004) Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy. Geoderma 118:181–190. https://doi.org/10.1016/s0016-7061(03)00192-7

    Article  Google Scholar 

  19. Gossart P, Semmoud A, Ouddane B, Huvenne JP (2003) Study of the interaction between humic acids and lead: exchange between Pb2+ and H+ under various chemical conditions followed by FTIR. Phys Chem News 9:101–108

    CAS  Google Scholar 

  20. Gu SQ, Kang XN, Wang L, Lichtfouse E, Wang CY (2019) Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environ Chem Lett 17:629–654. https://doi.org/10.1007/s10311-018-0813-9

    CAS  Article  Google Scholar 

  21. Huang PM, Berthelin J, Bollag JM, McGill WB (1995) Environmental impacts of soil component interactions: land quality, Natural and Anthropogenic Organics. CRC Press. https://doi.org/10.1039/B406989G

  22. Jia MY, Li H, Zhu HL, Tian R, Gao XD (2013) An approach for the critical coagulation concentration estimation of polydisperse colloidal suspensions of soil and humus. J Soils Sediments 13:325–335. https://doi.org/10.1007/s11368-012-0608-8

    CAS  Article  Google Scholar 

  23. Kaiser M, Zederer DP, Ellerbrock RH, Sommer M, Ludwig B (2016) Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis. Geoderma 263:1–7. https://doi.org/10.1016/j.geoderma.2015.08.029

    CAS  Article  Google Scholar 

  24. Kang SH, Xing BS (2007) Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT. Langmuir 23:7024–7031. https://doi.org/10.1021/la700543f

    CAS  Article  Google Scholar 

  25. Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56:717–725. https://doi.org/10.1111/j.1365-2389.2005.00706.x

    CAS  Article  Google Scholar 

  26. Kloster N, Brigante M, Zanini G, Avena M (2013) Aggregation kinetics of humic acids in the presence of calcium ions. Colloid Surface Physicochem Eng Aspect 427:76e82. https://doi.org/10.1016/j.colsurfa.2013.03.030

    CAS  Article  Google Scholar 

  27. Lishtvan II, Yanuta YG, Abramets’ AM, Monich GS, Glukhova NS, Aleinikova VN (2012) Interaction of humic acids with metal ions in the water medium. J Water Chem Technol 34:211–217. https://doi.org/10.3103/s1063455x12050013

    Article  Google Scholar 

  28. Logan EM, Pulford ID, Cook GT, Mackenzie AB (1997) Complexation of Cu2+ and Pb2+ by peat and humic acid. Eur J Soil Sci 48:685–696. https://doi.org/10.1111/j.1365-2389.1997.tb00568.x

    CAS  Article  Google Scholar 

  29. Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review. Eur J Soil Sci 57:426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x

    CAS  Article  Google Scholar 

  30. Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10. https://doi.org/10.1016/s0924-2031(02)00065-6

    Article  Google Scholar 

  31. Majzik A, Tombácz E (2007) Interaction between humic acid and montmorillonite in the presence of calcium ions I. interfacial and aqueous phase equilibria: adsorption and complexation. Org Geochem 38:1319–1329. https://doi.org/10.1016/j.orggeochem.2007.04.002

    CAS  Article  Google Scholar 

  32. Martinez RE, Sharma P, Kappler A (2010) Surface binding site analysis of Ca2+-homoionized clay–humic acid complexes. J Colloid Interface Sci 352:526–534. https://doi.org/10.1016/j.jcis.2010.08.082

    CAS  Article  Google Scholar 

  33. Pashley RM, Israelachvili JN (1984) DLVO and Hydration Forces between Mica Surfaces in Mg2+ , Ca2+, Sr2+, and Ba2+ Chloride Solutions. J Colloid Interface Sci 97:446–455. https://doi.org/10.1016/0021-9797(84)90316-3

    CAS  Article  Google Scholar 

  34. Piccolo A, Conte P, Cozzolino A (1999) Effects of mineral and monocarboxylic acids on the molecular association of dissolved humic substances. Eur J Soil Sci 50:687–694. https://doi.org/10.1046/j.1365-2389.1999.00276.x

    CAS  Article  Google Scholar 

  35. Séquaris JM (2010) Modeling the effects of Ca2+ and clay-associated organic carbon on the stability of colloids from topsoils. J Colloid Interface Sci 343:408–414. https://doi.org/10.1016/j.jcis.2009.12.014

    CAS  Article  Google Scholar 

  36. Sevink J, Verstraten JM, Jongejans J (1998) The relevance of humus forms for land degradation in Mediterranean mountainous areas. Geomorphology 23:285–292. https://doi.org/10.1016/S0169-555X(98)00010-5

    Article  Google Scholar 

  37. Shim Y, Lee HJ, Lee S, Moon SH, Cho J (2002) Effects of natural organic matter and ionic species on membrane surface charge. Environ Sci Technol 36:3864–3871. https://doi.org/10.1021/es015880b

    CAS  Article  Google Scholar 

  38. Šolc R, Gerzabek MH, Lischka H, Tunega D (2014) Radical sites in humic acids: a theoretical study on protocatechuic and gallic acids. Comput Theor Chem 1032:42–49. https://doi.org/10.1016/j.comptc.2014.01.015

    CAS  Article  Google Scholar 

  39. Tan LQ, Yu ZW, Tan XL, Fang M, Wang XX, Wang JF, Xing JL, Ai YJ, Wang XK (2019) Systematic studies on the binding of metal ions in aggregates of humic acid: aggregation kinetics, spectroscopic analyses and MD simulations. Environ Pollut 246:999–1007. https://doi.org/10.1016/j.envpol.2019.01.007

    CAS  Article  Google Scholar 

  40. Tang Z, Cheng T, Fisher-Power LM (2018) Influence of aggregation on nanoscale titanium dioxide (nTiO2) deposition to quartz sand. Chemosphere 209:517–524. https://doi.org/10.1016/j.chemosphere.2018.06.112

    CAS  Article  Google Scholar 

  41. Terkhi MC, Taleb F, Gossart P, Semmoud A, Addou A (2008) Fourier transform infrared study of mercury interaction with carboxyl groups in humic acids. J Photoch Photobio A 198:205–214. https://doi.org/10.1016/j.jphotochem.2008.03.018

    CAS  Article  Google Scholar 

  42. Tian R, Yang G, Li H, Gao XD, Liu XM, Zhu HL, Tang Y (2014) Activation energies of colloidal particle aggregation: towards a quantitative characterization of specific ion effects. Phys Chem Chem Phys 16:8828–8836. https://doi.org/10.1039/c3cp54813a

    CAS  Article  Google Scholar 

  43. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    CAS  Article  Google Scholar 

  44. Tremblay L, Gagné JP (2009) Organic matter distribution and reactivity in the waters of a large estuarine system. Mar Chem 116:1–12. https://doi.org/10.1016/j.marchem.2009.09.006

    CAS  Article  Google Scholar 

  45. Wang KJ, Xing BS (2005) Structural and sorption characteristics of adsorbed humic acid on clay minerals. J Environ Qual 34:342–349. https://doi.org/10.2134/jeq2005.0342

    CAS  Article  Google Scholar 

  46. Xiong J, Koopal LK, Weng L, Wang M, Tan W (2015) Effect of soil fulvic and humic acid on binding of Pb to goethite–water interface: linear additivity and volume fractions of HS in the stern layer. J Colloid Interface Sci 457:121–130. https://doi.org/10.1016/j.jcis.2015.07.001

    CAS  Article  Google Scholar 

  47. Xu CY, Li H, Hu FN, Li S, Liu XM, Li Y (2015) Non-classical polarization of cations increases the stability of clay aggregates: specific ion effects on the stability of aggregates. Eur J Soil Sci 66(3):615–623. https://doi.org/10.1111/ejss.12252

    CAS  Article  Google Scholar 

  48. Xu Z, Pan DQ, Sun YL, Wu WS (2018) Stability of GMZ bentonite colloids: aggregation kinetic and reversibility study. Appl Clay Sci 161:436–443. https://doi.org/10.1016/j.clay.2018.05.002

    CAS  Article  Google Scholar 

  49. Zhang SQ, Hou WG (2008) Adsorption behavior of Pb (II) on montmorillonite. Colloid Surface A 320:92–97. https://doi.org/10.1016/j.colsurfa.2008.01.038

    CAS  Article  Google Scholar 

  50. Zhang LC, Luo L, Zhang SZ (2012) Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals. Colloid Surface A 406:84–90. https://doi.org/10.1016/j.colsurfa.2012.05.003

    CAS  Article  Google Scholar 

  51. Zhang XY, Zhang L, Zou X, Han FY, Yan ZP, Li Z, Hu SJ (2018) Semi-quantitative analysis of microbial production of oxalic acid by montmorillonite sorption and ATR-IR. Appl Clay Sci 162:518–523. https://doi.org/10.1016/j.clay.2018.07.006

    CAS  Article  Google Scholar 

  52. Zhu LH, Li ZY, Tian R, Li H (2019) Specific ion effects of divalent cations on the aggregation of positively charged goethite nanoparticles in aqueous suspension. Colloid Surface A 565:78–85. https://doi.org/10.1016/j.colsurfa.2018.12.040

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Xiaodan Gao and Yingde Xu would like to thank China Scholarship Council for the financial support from the State Scholarship Fund (201808210128, 201808210259).

Funding

This work was supported by the National Natural Science Foundation of China (41601230, 41701255), Postdoctoral Science Foundation of China (2017 M611265), and Basic Scientific Research Project of University in Liaoning (LSNZD201705).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingkuan Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Informed consent

The manuscript is approved by all authors for publication, and research does not involve human participants and/or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Heike Knicker

Supplementary Information

ESM 1

(DOCX 239 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Xu, Y., Li, Z. et al. Heteroaggregation of humic acid with montmorillonite in divalent electrolytes: effects of humic acid content and ionic concentration. J Soils Sediments 21, 1317–1328 (2021). https://doi.org/10.1007/s11368-020-02858-y

Download citation

Keywords

  • Clay-humic substance complexes
  • Activation energy
  • Complexation mechanism
  • Infrared spectroscopy
  • Metal ions
  • Organic-mineral complexes