Skip to main content
Log in

Effects of river infrastructures on the floodplain sedimentary environment in the Rhône River

  • Sediments as a Dynamic Natural Resource – From Catchment to Open Sea
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

River infrastructures such as dikes, groynes, and dams are ubiquitous on most large rivers, and although their consequences on the riverbed morphology have often been studied, the effect they might have on the river floodplain and margins remains largely unknown. By investigating the structure and composition of floodplain sediments in three areas along the Rhône River that were extensively engineered during the last 150 years, this paper aims to understand whether river infrastructures might systematically induce a change in sedimentation patterns in the river margins.

Materials and methods

A total of fifteen sediment cores were sampled in three distinct reaches of the Rhône valley downstream of Lyon. They were thoroughly analyzed in terms of grain size, using heatmap representations and end-member analysis. Six metallic elements (Zn, Cr, Pb, Cu, Ni, Cd) were systematically quantified. In six out of the fifteen cores, total organic carbon (TOC), organic contaminants (PCBs) concentrations, and 137Cs activity were also assessed.

Results and discussion

A sharp change in grain size distribution is consistently identified in the sediment cores of all three study reaches. The sediments above this change are fine (D50 < 100 μm), poorly classified and homogenous. They also show a relative increase in contamination when compared with deeper sediments. We interpret this change in sediment characteristics as the consequence of an abrupt decrease in connectivity between the floodplain and the river channel, likely due to the implementation of navigation infrastructures in the channel in the second half of the nineteenth century. In one case, the dating of the sediment cores allows linking the grain size change to the implementation of navigation infrastructures in the channel. In the other study areas, the effect of engineering seems delayed in time due to local variability.

Conclusions

The implementation of river infrastructures resulted in a loss of connectivity between the floodplain and the channel. This was reflected as the homogenization of the floodplain sedimentary environment of the Rhône River all along its course from Lyon to the sea. A similar phenomenon might be present in most engineered rivers across Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abril JM, San Miguel EG, Ruiz-Canovas C et al (2018) From floodplain to aquatic sediments: radiogeochronological fingerprints in a sediment core from the mining impacted Sancho Reservoir (SW Spain). Sci Total Environ 631–632:866–878

    Google Scholar 

  • Amiard J-C, Meunier T, Babut M (2016) PCB, environnement et santé. Lavoisier, Paris

    Google Scholar 

  • Antonelli C, Eyrolle F, Rolland B, Provansal M, Sabatier F (2008) Suspended sediment and 137Cs fluxes during the exceptional December 2003 flood in the Rhone River, Southeast France. Geomorphology 95:350–360

    Google Scholar 

  • Arnaud-Fassetta G (2003) River channel changes in the Rhone Delta (France) since the end of the Little Ice Age: geomorphological adjustment to hydroclimatic change and natural resource management. Catena 51:141–172

    Google Scholar 

  • Audry S, Schäfer J, Blanc G, Jouanneau J-M (2004) Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ Pollut 132:413–426

    CAS  Google Scholar 

  • Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf 26:1237–1248

    Google Scholar 

  • Bravard J-P, Landon N, Peiry J-L, Piégay H (1999) Principles of engineering geomorphology for managing channel erosion and bedload transport, examples from French rivers. Geomorphology 31:291–311

    Google Scholar 

  • Breivik K, Sweetman A, Pacyna JM, Jones KC (2002) Towards a global historical emission inventory for selected PCB congeners — a mass balance approach: 1. Global production and consumption. Sci Total Environ 290:181–198

    CAS  Google Scholar 

  • Brown A, Toms P, Carey C, Rhodes E (2013) Geomorphology of the anthropocene: time-transgressive discontinuities of human-induced alluviation. Anthropocene 1:3-13

  • Brown AG, Lespez L, Sear DA, Macaire JJ, Houben P, Klimek K, Brazier RE, van Oost K, Pears B (2018) Natural vs anthropogenic streams in Europe: history, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth-Sci Rev 180:185–205

    Google Scholar 

  • Buczyńska E, Szlauer-Łukaszewska A, Czachorowski S, Buczyński P (2018) Human impact on large rivers: the influence of groynes of the River Oder on larval assemblages of caddisflies (Trichoptera). Hydrobiologia 819:177–195

    Google Scholar 

  • Carrie J, Sanei H, Goodarzi F, Stern G, Wang F (2009) Characterization of organic matter in surface sediments of the Mackenzie River Basin, Canada. Int J Coal Geol 77:416–423

    CAS  Google Scholar 

  • Carrie J, Sanei H, Stern G (2012) Standardisation of Rock–Eval pyrolysis for the analysis of recent sediments and soils. Org Geochem 46:38–53

    CAS  Google Scholar 

  • Cossa D, Fanget A-S, Chiffoleau J-F, Bassetti MA, Buscail R, Dennielou B, Briggs K, Arnaud M, Guédron S, Berné S (2018) Chronology and sources of trace elements accumulation in the Rhône pro-delta sediments (Northwestern Mediterranean) during the last 400years. Prog Oceanogr 163:161–171

    Google Scholar 

  • Csiki SJ, Rhoads BL (2014) Influence of four run-of-river dams on channel morphology and sediment characteristics in Illinois, USA. Geomorphology 206:215–229

    Google Scholar 

  • Dépret T, Riquier J, Piégay H (2017) Evolution of abandoned channels: insights on controlling factors in a multi-pressure river system. Geomorphology 294:99–118

    Google Scholar 

  • Desmet M, Mourier B, Mahler BJ, van Metre PC, Roux G, Persat H, Lefèvre I, Peretti A, Chapron E, Simonneau A, Miège C, Babut M (2012) Spatial and temporal trends in PCBs in sediment along the lower Rhône River, France. Sci Total Environ 433:189–197

    CAS  Google Scholar 

  • Dhivert E, Grosbois C, Courtin-Nomade A, Bourrain X, Desmet M (2016) Dynamics of metallic contaminants at a basin scale — spatial and temporal reconstruction from four sediment cores (Loire fluvial system, France). Sci Total Environ 541:1504–1515

    CAS  Google Scholar 

  • Dietze E, Hartmann K, Diekmann B, IJmker J, Lehmkuhl F, Opitz S, Stauch G, Wünnemann B, Borchers A (2012) An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment Geol 243–244:169–180

    Google Scholar 

  • Dietze M, Dietze E, Lomax J, Fuchs M, Kleber A, Wells S (2016) Environmental history recorded in aeolian deposits under stone pavements, Mojave Desert, USA. Quat Res 85:4–16

    Google Scholar 

  • Donovan M, Miller A, Baker M (2016) Reassessing the role of milldams in Piedmont floodplain development and remobilization. Geomorphology 268:133–145

    Google Scholar 

  • Entwistle NS, Heritage GL, Schofield LA, Williamson RJ (2019) Recent changes to floodplain character and functionality in England. Catena 174:490–498

    Google Scholar 

  • Ferrand E, Eyrolle F, Radakovitch O, Provansal M, Dufour S, Vella C, Raccasi G, Gurriaran R (2012) Historical levels of heavy metals and artificial radionuclides reconstructed from overbank sediment records in lower Rhône River (South-East France). Geochim Cosmochim Acta 82:163–182

    CAS  Google Scholar 

  • Francis CW, Brinkley FS (1976) Preferential adsorption of 137Cs to micaceous minerals in contaminated freshwater sediment. Nat 260:511–513

    CAS  Google Scholar 

  • Gaydou P (2013) Schéma directeur de ré-activation de la dynamique fluviale des marges du Rhône. Rapport de synthèse OSR. Lyon.

  • Giglou AN, Mccorquodale JA, Solari L (2017) Numerical study on the effect of the spur dikes on sedimentation pattern. Ain Shams Engineer J 9:2055–2067

    Google Scholar 

  • Habersack H, Hein T, Stanica A, Liska I, Mair R, Jäger E, Hauer C, Bradley C (2016) Challenges of river basin management: current status of, and prospects for, the River Danube from a river engineering perspective. Sci Total Environ 543:828–845

    CAS  Google Scholar 

  • Heritage G, Entwistle NS, Bentley S (2016) Floodplains: the forgotten and abused component of the fluvial system. E3S Web Conf 7. https://doi.org/10.1051/e3sconf/20160713007

  • Howard AJ, Coulthard TJ, Knight D (2017) The potential impact of green agendas on historic river landscapes: numerical modelling of multiple weir removal in the Derwent Valley Mills world heritage site. UK Geomorphology 293:37–52

    Google Scholar 

  • James LA (2017) Arrested geomorphic trajectories and the long-term hidden potential for change. J Environ Manag 202:412–423

    Google Scholar 

  • Johnson KM, Snyder NP, Castle S, Hopkins AJ, Waltner M, Merritts DJ, Walter RC (2018) Legacy sediment storage in New England river valleys: anthropogenic processes in a postglacial landscape. Geomorphology 327:417–437

    Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248

    CAS  Google Scholar 

  • Le Cloarec M-F, Bonte PH, Lestel L et al (2011) Sedimentary record of metal contamination in the Seine River during the last century. Physics Chem Earth, Parts A/B/C 36:515–529

    Google Scholar 

  • Lehotský M, Novotný J, Szmańda JB, Grešková A (2010) A suburban inter-dike river reach of a large river: modern morphological and sedimentary changes (the Bratislava reach of the Danube River, Slovakia). Geomorphology 117:298–308

    Google Scholar 

  • Lewin J (2013) Enlightenment and the GM floodplain. Earth Surf Process Landf 38:17–29

    Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    CAS  Google Scholar 

  • Magilligan FJ (1992) Sedimentology of a fine-grained aggrading floodplain. Geomorphology 4:393–408

    Google Scholar 

  • Merritts D, Walter R, Rahnis M, Hartranft J, Cox S, Gellis A, Potter N, Hilgartner W, Langland M, Manion L, Lippincott C, Siddiqui S, Rehman Z, Scheid C, Kratz L, Shilling A, Jenschke M, Datin K, Cranmer E, Reed A, Matuszewski D, Voli M, Ohlson E, Neugebauer A, Ahamed A, Neal C, Winter A, Becker S (2011) Anthropocene streams and base-level controls from historic dams in the unglaciated mid-Atlantic region, USA. Phil Trans Royal Soc London A: Math, Phys Eng Sci 369:976–1009

    Google Scholar 

  • Meybeck M, Lestel L, Bonté P, Moilleron R, Colin JL, Rousselot O, Hervé D, de Pontevès C, Grosbois C, Thévenot DR (2007) Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950–2005). Sci Total Environ 375:204–231

    CAS  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    CAS  Google Scholar 

  • Michelot J-L (1983) Evolution des paysages fluviaux de la vallée du Rhône dans le secteur du Péage-de-Roussillon. Géocarrefour 58:307–322

    Google Scholar 

  • Mourier B, Desmet M, Van Metre PC, Perrodin Y, Roux C, Bedell JC, Lefèvre I, Babut M (2014) Historical records, sources, and spatial trends of PCBs along the Rhône River (France). Sci Total Environ 476:568–576

    Google Scholar 

  • Ollivier P, Radakovitch O, Hamelin B (2011) Major and trace element partition and fluxes in the Rhône River. Chem Geol 285:15–31

    CAS  Google Scholar 

  • Parrot E (2015) Analyse spatio-temporelle de la morphologie du chenal du Rhône du Léman à la Méditerranée. Dissertation. University of Lyon, France

    Google Scholar 

  • Passmore DG, Macklin MG (1994) Provenance of fine-grained alluvium and late Holocene land-use change in the Tyne basin, northern England. Geomorphology 9:127–142

    Google Scholar 

  • Petit F, Poinsart D, Bravard J-P (1996) Channel incision, gravel mining and bedload transport in the Rhône river upstream of Lyon, France (“canal de Miribel”). Catena 26:209–226

    Google Scholar 

  • Pinglot JF, Pourchet M (1995) Radioactivity measurements applied to glaciers and lake sediments. Sci Total Environ 173–174:211–223

    Google Scholar 

  • Poeppl RE, Keesstra SD, Hein T (2015) The geomorphic legacy of small dams—an Austrian study. Anthropocene 10:43–55

    Google Scholar 

  • Provansal M, Dufour S, Sabatier F, Anthony E, Raccasi G, Robresco S (2014) The geomorphic evolution and sediment balance of the lower Rhône River (southern France) over the last 130years: hydropower dams versus other control factors. Geomorphology 219:27–41

    Google Scholar 

  • Przedwojski B (1995) Bed topography and local scour in rivers with banks protected by groynes. J Hydraul Res 33:257–273

    Google Scholar 

  • Räpple B (2018) Sedimentation patterns and riparian vegetation characteristics in novel ecosystems on the Rhône River, France: A comparative approach to identify drivers and evaluate ecological potentials. Dissertation. University of Lyon, France

    Google Scholar 

  • Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19:215–233

    CAS  Google Scholar 

  • Savić R, Ondrašek G, Bezdan A, Letić L, Nikolić V (2013) Fluvial deposition in groyne fields of the middle course of the Danube River. Tehnički vjesnik 20:979–983

    Google Scholar 

  • Steinmann P, Adatte T, Lambert P (2003) Recent changes in sedimentary organic matter from Lake Neuchâtel (Switzerland) as traced by Rock-Eval pyrolysis. In: Beres M, Scheidhauer M, Marillier F (eds) Lake systems from the ice age to industrial time. Birkhäuser Basel, Basel, pp 109–116

    Google Scholar 

  • Surian N, Rinaldi M (2003) Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50:307–326

    Google Scholar 

  • Syvitski JPM, Kettner A (2011) Sediment flux and the Anthropocene. Phil Trans Royal Soc of London A: Math Phys Eng Sci 369:957–975

    Google Scholar 

  • Tena A, Seignemartin G, Roux G, Winiarski T, Piégay H (2017) Factors controlling groyne-field sedimentation and contamination along the Rhône River. Presented at the 3rd International Conference on the Status and Future of the World’s large rivers, New Delhi, India

  • Tockner K, Uehlinger U, Robinson CT (2009) Rivers of Europe. Elsevier

  • Toonen WHJ, Winkels TG, Cohen KM, Prins MA, Middelkoop H (2015) Lower Rhine historical flood magnitudes of the last 450years reproduced from grain-size measurements of flood deposits using end member modelling. Catena 130:69–81

    Google Scholar 

  • Vázquez-Tarrío D, Tal M, Camenen B, Piégay H (2019) Effects of continuous embankments and successive run-of-the-river dams on bedload transport capacities along the Rhône River, France. Sci Total Environ 658:1375–1389

    Google Scholar 

  • Walter RC, Merritts DJ (2008) Natural streams and the legacy of water-powered mills. Sci 319:299–304

    CAS  Google Scholar 

  • Weltje GJ, Prins MA (2003) Muddled or mixed? Inferring paleoclimate from size distributions of deep-sea clastics. Sediment Geol 162:39–62

    Google Scholar 

  • Weltje GJ, Prins MA (2007) Genetically meaningful decomposition of grain-size distributions. Sediment Geol 202:409–424

    Google Scholar 

  • Wen X, Du Q, Tang H (1998) Surface complexation model for the heavy metal adsorption on natural sediment. Environ Sci Technol 32:870–875

    CAS  Google Scholar 

  • Zawiejska J, Wyżga B (2010) Twentieth-century channel change on the Dunajec River, southern Poland: patterns, causes and controls. Geomorphology 117:234–246

    Google Scholar 

Download references

Acknowledgments

This study was conducted in the combined frameworks of (i) the Rhône Sediment Observatory (OSR), a multi-partner research program funded through the Plan Rhône by the European Regional Development Fund (ERDF), Agence de l'eau RMC, CNR, EDF, and three regional councils (Auvergne-Rhône-Alpes, PACA and Occitanie), and (ii) the EUR H2O’Lyon (ANR-17-EURE-0018) of Université de Lyon (UdL), within the program “Investissements d'Avenir” operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Vauclin.

Additional information

Responsible editor: Elena Romano

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vauclin, S., Mourier, B., Tena, A. et al. Effects of river infrastructures on the floodplain sedimentary environment in the Rhône River. J Soils Sediments 20, 2697–2708 (2020). https://doi.org/10.1007/s11368-019-02449-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02449-6

Keywords

Navigation