Skip to main content

Advertisement

Log in

Vinasse irrigation: effects on soil fertility and arbuscular mycorrhizal fungi population

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The aim of this research was to determine the vinasse irrigation effects on the arbuscular mycorrhizal fungi (AMF) population (total spore abundance (TSA), richness, relative abundance, and diversity indices) and soil parameters and nutrients at high doses. The irrigation of soil with vinasses derived from sugarcane, beet, or alcohol production is a common practice around the world. Little is known about how this affects the AMF community and soil nutrients.

Materials and methods

The spider plant (Chlorophytum comosum, (Thunb.) Jacques), a mycorrhizable plant, was used to investigate the effect of 4 months of frequent vinasse irrigation (0, 25, 50, 75, and 100% vinasse concentration) on AMF and soil characteristics, e.g., electrical conductivity (EC), pH, mineral N, available P, Na+, K+, Ca2+, and Mg2+.

Results and discussion

The vinasse irrigation decreased the TSA, AMF richness and diversity after 4 months, regardless of vinasse concentration. The vinasse irrigation did not acidify the soil, but the EC, mineral N and available P increased. The biomass of C. comosum decreased (77–81%) after vinasse irrigation for 4 months.

Conclusions

Frequent irrigation with vinasse at concentrations ≥50% increases EC, K+, Na+, Mg2+, Ca2+ and available P in the soil, and decreases the amount of AMF spores, richness and diversity, which is not desirable in agricultural soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abeysingha NS, Bandara AMKR, Singh S (2017) Effect of Eppawela high graded rock phosphate (HERP) applied with vinasse on yield and quality of sugarcane (variety CO775). Natl Acad Sci Lett 40:253–256

    Article  CAS  Google Scholar 

  • American Public Health Association (1992) Standard methods for the examination of water and wastewater, 18th edn. Washington, DC

  • Aparecida-Christofoletti C, Pedro-Escher J, Evangelista-Correia J et al (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33:2752–2761

    Article  Google Scholar 

  • Arimi MM, Zhang Y, Götz G, Kiriamiti K, Geißen SU (2014) Antimicrobial colorants in molasses distillery wastewater and their removal technologies. Int Biodeterior Biodegrad 87:34–43

    Article  CAS  Google Scholar 

  • Arnold MA (2009) Chlorophytum comosum. In: Landscape Plants for Texas and Environs, 4th edn

  • Bai J, Gao H, Xiao R et al (2012) A review of soil nitrogen mineralization as affected by water and salt in coastal wetlands: issues and methods. Clean - Soil Air Water 40:1099–1105

    Article  CAS  Google Scholar 

  • Bengtsson G, Bengtson P, Mansson KF (2003) Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol Biochem 35:143–154

    Article  CAS  Google Scholar 

  • Bergmark CL, Jackson WA, Volk RJ, Blum U (1992) Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mays L. Plant Physiol 98:639–645

    Article  CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985) Effects of ferulic and p-coumaric acids in nutrient culture of cucumber leaf expansion as influenced by pH. J Chem Ecol 11:1567–1582

    Article  CAS  Google Scholar 

  • Bostyn S, Cagnon B, Fauduet H (2009) Optimization by the simplex method of the separation of phenolic acids by high-performance liquid chromatography in wastewater olive and sugar beet vinasse. Talanta 80:1–7

    Article  CAS  Google Scholar 

  • Braria A, Ahmad S, Harikumar SL (2014) Chlorophytum comosum (Thunberg) Jacques: a review. Int J Pharm 5:546–549

    Google Scholar 

  • Brundrett M, Bougher N, Dell B et al (1996) Working with mycorrhizas in forestry and agriculture, Canberra

  • Carbonnel S, Gutjahr C (2014) Control of arbuscular mycorrhiza development by nutrient signals. Front Plant Sci 5:462

    Article  Google Scholar 

  • CETESB (2006) Vinhaça—critérios e procedimentos para aplicação no solo agrícola

  • Correia JE, Christofoletti CA, Ansoar-Rodríguez Y, Guedes TA, Fontanetti CS (2017) Comet assay and micronucleus tests on Oreochromis niloticus (Perciforme:Cichlidae) exposed to raw sugarcane vinasse and to phisicochemical treated vinasse by pH adjustment with lime (CaO). Chemosphere 173:494–501

    Article  CAS  Google Scholar 

  • Dametie A, Fantaye A, Teshome Z (2014) Estimating effect of vinasse on sugarcane through application of potassium chloride at Metahara sugarcane plantation. Adv crop. Sci Technol 2:154

    Google Scholar 

  • Dane JH, Top C (2002) Methods of soil analysis. Part. 4 physical methods. Soil Sci. Soc. am. B. Ser 866

  • Datta P, Kulkarni M (2012) Arbuscular mycorrhizal fungal diversity in sugarcane rhizosphere in relation with soil properties. Not Sci Biol 4:66–74

    Article  CAS  Google Scholar 

  • Dave S, Tarafdar JC (2012) Arbuscular mycorrhizal fungi encourage drought tolerance of Chlorophytum borivilianum by enhancing antioxidant enzyme system. Appl Biol Res 14:60–70

    Google Scholar 

  • Dave S, Das J, Tarafdar JC (2011) Effect of vesicular arbuscular mycorrhizae on growth and saponin accumulation in Chlorophytum borivilianum. ScienceAsia 37:165–169

    Article  CAS  Google Scholar 

  • Diacono M, Montemurro F (2011) Long-term effects of organic amendments on soil fertility. In: Lichtfouse E, Hameli M, Navarrete M, Debaeke P (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht, pp 761–786

    Chapter  Google Scholar 

  • Do Nascimento R, De Souza JA, Moreira A, Cardoso Moraes LA (2017) Phosphogypsum and vinasse application: soil chemical properties and alfalfa productivity and nutritional characteristics. Rev Caatinga 2125:213–219

    Article  Google Scholar 

  • Estrada B, Aroca R, Azcón-Aguilar C, Barea JM, Ruiz-Lozano JM (2013) Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant Soil 370:175–185

    Article  CAS  Google Scholar 

  • Fernandes C, Garcia H, De Souza RB et al (2017) Toxicity of two effluents from agricultural activity: comparing the genotoxicity of sugar cane and orange vinasse. Ecotoxicol Environ Saf 142_216–221

  • Fuess LT, Garcia ML (2014) Implications of stillage land disposal: a critical review on the impacts of fertigation. J Environ Manag 145:210–229

    Article  CAS  Google Scholar 

  • Gallego-Blanco J, Munoz E, Hernandez-Rios L (2012) Efectos de aplicación de vinaza mezclada con microrganismos sobre un Vertisol con caña de azúcar. Agron Colomb 30:116–123

    Google Scholar 

  • González L, Mejía M (2015) Impact of ferti-irrigation with vinasse on groundwater quality. Irrig Drain 64:400–407

    Article  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  Google Scholar 

  • Jiang ZP, Li YR, Wei GP, Liao Q, Su TM, Meng YC, Zhang HY, Lu CY (2012) Effect of long-term vinasse application on physico-chemical properties of sugarcane field soils. Sugar Tech 14:412–417

    Article  CAS  Google Scholar 

  • Laime EMO, Fernandes PD, Oliveira DCS, Freire EA (2011) Possibilidades tecnológicas para a destinação da vinhaça: uma revisão. Rev Trópica Ciências Agrar e Biológicas 5:16–29

    Google Scholar 

  • Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    Article  CAS  Google Scholar 

  • Lim SL, Lee LH, Wu TY (2016) Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J Clean Prod 111:262–278

    Article  Google Scholar 

  • López-López A, Davila-Vazquez G, León-Becerril E, Villegas-García E, Gallardo-Valdez J (2010) Tequila vinasses: generation and full scale treatment processes. Rev Environ Sci Bio/Technol 9:109–116

    Article  Google Scholar 

  • Lyu S-W, Blum U, Gerig TM, O’Brien TE (1990) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J Chem Ecol 16:2559–2567

    Article  CAS  Google Scholar 

  • Madejón E, López R, Murillo JM, Cabrera F (2001) Agricultural use of three (sugar-beet) vinasse composts: effect on crops and chemical properties of a Cambisol soil in the Guadalquivir river valley (SW Spain). Agric Ecosyst Environ 84:55–65

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Padstow

    Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334:564–571

    Article  CAS  Google Scholar 

  • Mechri B, Mariem FB, Baham M, Elhadj SB, Hammami M (2008) Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi. Soil Biol Biochem 40:152–161

    Article  CAS  Google Scholar 

  • Min K, Freeman C, Kang H, Choi S-U (2015) The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. Biomed Res Int 2015:1–11

    Google Scholar 

  • Montenegro-Gomez SP (2008) Influencia de la aplicación de vinaza sobre la presencia, actividad y biomasa microbiana del suelo en el cultivo de maíz dulce (Zea mays). Universidad Nacional de Colombia

  • Moran-Salazar RG, Sanchez-Lizarraga AL, Rodriguez-Campos J, Davila-Vazquez G, Marino-Marmolejo EN, Dendooven L, Contreras-Ramos SM (2016) Utilization of vinasses as soil amendment: consequences and perspectives. Spring 5(1):1007

    Article  CAS  Google Scholar 

  • Mulvaney RL (1996) Nitrogen inorganic forms. In: Sparks DL (ed) Methods of soils analysis chemical methods. Part 3. Soil science Society of America Inc. American Society of Agronomy Inc, Madison, pp 1123–1184

    Google Scholar 

  • Navarrete AA, Diniz TR, Braga LPP et al (2015) Multi-analytical approach reveals potential microbial indicators in soil for sugarcane model systems. PLoS One 10:1–19

    Article  Google Scholar 

  • Neset TSS, Cordell D (2012) Global phosphorus scarcity: identifying synergies for a sustainable future. J Sci Food Agric 92:2–6

    Article  Google Scholar 

  • Nikam V, Chavan P (2009) Influence of water deficit and waterlogging on the mineral status of a medicinal plant Chlorophytum borivilianum. Acta Bot Hung 51:105–113

    Article  CAS  Google Scholar 

  • NOM-021-SEMARNAT-2000 (2000) Norma Oficial Mexicana que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación 31/12/2002, México

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular no 939. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Park HJ, Kim W-Y, Yun D-J (2016) A new insight of salt stress signaling in plant. Mol Cells 39:447–459

    Article  CAS  Google Scholar 

  • Parnaudeau V, Condom N, Oliver R, Cazevieille P, Recous S (2008) Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresour Technol 99:1553–1562

    Article  CAS  Google Scholar 

  • Pedro-Escher J, Christofoletti CA, Ansoar-Rodríguez Y, Fontanetti CS (2016) Sugarcane vinasse, a residue of ethanol industry: toxic, cytotoxic and genotoxic potential using the allium cepa test. J Environ Prot (Irvine, Calif) 7:602–612

    Article  CAS  Google Scholar 

  • Pereira Aleixo A, Kaschuk G, Alberton O (2014) Soil fungal and bacterial biomass determined by epifluorescence microscopy and mycorrhizal spore density in different sugarcane managements. Cienc Rural 44:588–594

    Article  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  Google Scholar 

  • Rachid CTCC, Pires CA, Leite DCA, Coutinho HLC, Peixoto RS, Rosado AS, Salton J, Zanatta JA, Mercante FM, Angelini GAR, Balieiro FC (2016) Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment. Braz J Microbiol 47(2):322–326

    Article  CAS  Google Scholar 

  • Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. MacGrw-Hill

  • Robles-Gonzáles V, Galíndez-Mayer J, Rinderknecht-Seijas N, Poggi-Varaldo H (2012) Treatment of mezcal vinasses: a review. J Biotechnol 157:521–546

    Google Scholar 

  • Rodríguez-Félix E, Contreras-Ramos S, Davila-Vazquez G, Rodríguez-Campos J, Marino-Marmolejo E (2018) Identification and quantification of volatile compounds found in vinasses from two different processes of tequila production. Energies 11:490

    Article  Google Scholar 

  • Roy ED, Richards PD, Martinelli LA et al (2016) The phosphorus cost of agricultural intensification in the tropics. Nat Plants 2:Art 160143. doi:https://doi.org/10.1038/nplants.2016.43

    Article  CAS  Google Scholar 

  • Schereiner RP, Koide RT (1993) Antifungal compounds from the root of mycotrophic and non-mycotrophic plant species. New Phytol 123:99–105

    Article  Google Scholar 

  • Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schüβler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Gloucester

  • da Silva A, Rossetto R, Bonnecine J, Piemonte M, Muraoka T (2013) Net and potential nitrogen mineralization in soil with sugarcane vinasse. Sugar Tech 15:159–164

    Article  CAS  Google Scholar 

  • da Silva A, Rossetto R, Bombecini J, Piemonte M, Muraoka T (2014) Nitrogen mineralization from sugarcane vinasse. J Plant Nutr 37:1227–1236

    Article  Google Scholar 

  • Silva JGD, de Carvalho JJ, Rodrigues da Luz JM, Cavalcante da Silva JE (2016) Fertigation with domestic wastewater: uses and implications. African J Biotechnol 15:806–815

    Article  CAS  Google Scholar 

  • Sivakumar N (2013) Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Ann Microbiol 63:151–160

    Article  Google Scholar 

  • Souza T (2015) Overview. In: Handbook of arbuscular mycorrhizal fungi. Springer International Publishing, p 153

  • Sparks DL (1996) Methods of soil analysis. Part 3. Chemical Methods. Soil Sci Soc Am B Ser 3:1264

    Google Scholar 

  • Taiz L, Zeiger E (2006) Fisiología vegetal, Tercera. Publicacions de la Universitat Jaume I, DL

  • Tejada M, Moreno JL, Hernandez MT, Garcia C (2007) Application of two beet vinasse forms in soil restoration: effects on soil properties in an arid environment in southern Spain. Agric Ecosyst Environ 119:289–298

    Article  Google Scholar 

  • Trouvelot S, Bonneau L, Redecker D, van Tuinen D, Adrian M, Wipf D (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron Sustain Dev 35:1449–1467

    Article  Google Scholar 

  • USDA (2014) Soil survey manual. Washington, DC

  • USEPA (2004) Guidelines for water reuse, agricultural reuse

  • Velásquez Pomar DC, Sánchez de Prager M (2011) Efecto de vinazas sobre hongos que forman micorriza arbuscular en un Molisol del Valle del Cauca, Colombia. Effect of vinasse on arbuscular mycorrhizal fungi in a Mollisol of Cauca Valley (Colombia). Rev Fac Nac Agron Medellín 64:5755–5767

    Google Scholar 

  • Wang Y, Qiu Q, Li S, Xin G, Tam NFY (2014) Inhibitory effect of municipal sewage on symbiosis between mangrove plants and arbuscular mycorrhizal fungi. Aquat Biol 20:119–127

    Article  CAS  Google Scholar 

  • Xiang X, Gibbons SM, He J-S, Wang C, He D, Li Q, Ni Y, Chu H (2016) Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet plateau. PeerJ 4:e2226

    Article  Google Scholar 

  • Xu RK, Zhao AZ, Yuan JH, Jiang J (2012) pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. J Soils Sediments 12:494–502

    Article  CAS  Google Scholar 

  • Yaseen T, Naseer A, Shakeel M (2016) Investigating the association of arbuscular mycorrhizal fungi with selected ornamental plants collected from district Charsadda, KPK, Pakistan. Sci Technol Dev 35:141–147

    Article  Google Scholar 

  • Zhang L, Sun X (2014) Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour Technol 171:274–284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this manuscript to the memory of G. Davila-Vazquez (R.I.P.), friend, co-author, and co-worker in this research. His contributions, dedication, and enthusiasm are remembered fondly.

Funding

This work was supported by “Consejo Nacional de Ciencia y Tecnología (CONACYT)” Mexico through project 181070 from “Fondo Sectorial de Investigación para la Educación SEP.” S.-L. A. L. received a grant from CONACYT (number 300512).

Author information

Authors and Affiliations

Author notes

  1. Gustavo Davila-Vazquez is deceased. This paper is dedicated to his memory.

    • Gustavo Davila-Vazquez
Authors

Corresponding author

Correspondence to Silvia Maribel Contreras-Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Zhenli He

Electronic supplementary material

ESM 1

(DOCX 4254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Lizarraga, A.L., Arenas-Montaño, V., Marino-Marmolejo, E.N. et al. Vinasse irrigation: effects on soil fertility and arbuscular mycorrhizal fungi population. J Soils Sediments 18, 3256–3270 (2018). https://doi.org/10.1007/s11368-018-1996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-1996-1

Keywords

Navigation