Skip to main content
Log in

Root system responses of hyperaccumulator Solanum nigrum L. to Cd

  • SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • SHORT ORIGINAL COMMUNICATION
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Though phytoremediation is an important technology for remedying heavy metal-contaminated soils, hyperaccumulation mechanism, especially in root, is still less known.

Materials and methods

Pot culture experiment was used to explore the tolerance mechanism of a cadmium (Cd) hyperaccumulator Solanum nigrum L. by determining the main root traits compared to the non-hyperaccumulator Solanum melongena L. (cultivar name Liaoqie 3) in the same plant family.

Results and discussion

The total root lengths, total root surface areas, and total root volumes of S. nigrum were not significantly decreased (p < 0.05) compared to their controls when Cd spikes were lower than 20 mg kg–1. However, the abovementioned three factors of S. melongena were significantly decreased (p < 0.05) when 20 mg kg–1 of Cd was spiked. By contrast, S. nigrum showed stronger tolerance to Cd. In addition, S. nigrum showed all Cd hyperaccumulator characteristics, i.e., a Cd hyperaccumulator. S. melongena was a non-Cd hyperaccumulator.

Conclusions

These results indicated that root trait can be a factor of hyperaccumulation because of strong tolerance to Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Pant Nutr 3:643–54

    Article  CAS  Google Scholar 

  • Bengough AG (2003) Root growth and function in relation to soil structure composition and strength. In: DeKroon H, Visser EJW (eds) Root Ecology. Springer Verlag, Berlin, pp 151–171

    Google Scholar 

  • Chaney RL, Malik M, Li YM (1997) Phytoremediation of soil metals. Curr Opin Biotechn 8:279–284

    Article  CAS  Google Scholar 

  • Davies WJ, Bacon MA (2003) Adaptation of roots to drought. In: DeKroon H, Visser EJW (eds) Root Ecology. Springer Verlag, Berlin, pp 172–183

    Google Scholar 

  • Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63:220–227

    Article  CAS  Google Scholar 

  • Leitenmaier B, Witt A, Witzke A, Stemke A, Meyer-Klaucke W, Kroneck PMH, Küpper H (2011) Biochemical and biophysical characterisation yields insights into the mechanism of a Cd/Zn transporting ATPase purified from the hyperaccumulator plant Thlaspi caerulescens. Biochimica et Biophysica Acta (BBA) –Biomembranes 1808:2591–2599

    Article  CAS  Google Scholar 

  • Li T, Yang XE, Lu LL, Islam E, He ZL (2009) Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J Hazard Mater 169:734–741

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Mathews S, Ma LQ, Rathinasabapathi B, Natarajan S, Saha UK (2010) Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L. Bioresource Technol 101:8024–8030

    Article  CAS  Google Scholar 

  • Page V, Weisskopf L, Feller U (2006a) Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol 171:329–341

    Article  CAS  Google Scholar 

  • Page V, Le Bayon R-C, Feller U (2006b) Partitioning of zinc, cadmium, manganese and cobalt in wheat (Triticum aestivum) and lupin (Lupinus albus) and further release into the soil. Envir Experim Botany 58:269–278

    Article  CAS  Google Scholar 

  • Perriguey J, Sterckeman T, Morel J (2008) Effect of rhizosphere and plant-related factors on the cadmium uptake by maize (Zea mays L.). Envir Experim Botany 63:333–341

    Article  CAS  Google Scholar 

  • Raj A, Pandey AK, Sharma YK, Khare PB, Srivastava PK, Singh N (2011) Metabolic adaptation of Pteris vittata L. gametophyte to arsenic induced oxidative stress. Bioresource Tech 102:9827–9832

    Article  CAS  Google Scholar 

  • Singh N, Raj A, Khare PB, Tripathi RD, Jamil S (2010) Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris, in comparison to Pteris vittata, as arsenic hyperaccumulator. Bioresource Tech 10:8960–8968

    Article  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Huang HG, Wang K, Brown PH (2012) Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. Biol Plant 56:344–350

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Wei SH, Zhou QX, Wang X, Zhang KS, Guo GL, Ma LQ (2005) A newly discovered Cd-hyperaccumulator Solanum nigrum L. Chin Sci Bullet 50:33–38

    Article  CAS  Google Scholar 

  • Wei SH, Li YM, Zhou QX, Mrittunjai S, Chiu S, Zhan J, Wu ZJ, Sun TH (2010) Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. J Hazard Mater 176:269–273

    Article  CAS  Google Scholar 

  • Wei SH, Li YM, Zhan J, Wang SS, Zhu JG (2012) Tolerant mechanisms of Rorippa globosa (Turcz.) Thell. hyperaccumulating Cd explored from root morphology. Bioresource Tech 118:455–459

    Article  CAS  Google Scholar 

  • Wisniewski L, Dickinson NM (2003) Toxicity of copper to Quercus robur (English Oak) seedlings from a copper-rich soil. Environ Exp Bot 50:99–107

    Article  CAS  Google Scholar 

  • Zhang YJ, Lynch JP, Brown KM (2003) Ethylene phosphorus availability have interacting yet distinct effects on root hair development. J Exp Bot 54:2351–2361

    Article  CAS  Google Scholar 

  • Zheljazkov VD, Craker LE, Xing BS (2006) Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ Exp Bot 58:9–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31270540, 31070455, 40971184 and 40930739), the National Science & Technology Pillar Program (2012BAC17B04), Hi-tech research and development program of China (2012AA06A202), and Natural Science Foundation of Liaoning Province, China (201102224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhe Wei.

Additional information

Responsible editor: Peter Schroeder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, S., Wang, S., Li, Y. et al. Root system responses of hyperaccumulator Solanum nigrum L. to Cd. J Soils Sediments 13, 1069–1074 (2013). https://doi.org/10.1007/s11368-013-0687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-013-0687-1

Keywords

Navigation