A life cycle model for high-speed rail infrastructure: environmental inventories and assessment of the Tours-Bordeaux railway in France



The objective of the study is to progress towards a comprehensive component-based Life Cycle Assessment model with clear and reusable Life Cycle Inventories (LCIs) for high-speed rail (HSR) infrastructure components, and to assess the main environmental impacts of HSR infrastructure over its lifespan, to finally determine environmental hotpots and good practices.


A process-based LCA compliant with ISO 14040 and 14044 is performed. Construction-stage LCIs rely on data collection conducted with the concessionaire of the HSR line combined with EcoInvent 3.1 inventories. Use and End-of-Life stages LCIs rest on expert feedback scenarios and field data. A set of 13 midpoint indicators is proposed to capture the diversity of the environmental damage: climate change, consumptions of primary energy and non-renewable resources, human toxicity and ecotoxicities, eutrophication, acidification, radioactive and bulk wastes, stratospheric ozone depletion, and summer smog. Three characterization methods are used: the “Cumulative Energy Demand” method to quantify energy demand, the EDIP method for waste productions, and the CML method for the rest.

Results and discussion

The study shows major contributions to environmental impact from rails (10–71%), roadbed (3–48%), and civil engineering structures (4–28%). More limited impact is noted from ballast (1–22%), building machines (0–17%), sleepers (4–11%), and power supply system (2–12%). The two last components, chairs and fasteners, have negligible impact (max. 1 and 3% of total contributions, respectively). Direct transportation can contribute up to 18% of total impact. The production and maintenance stages contribute roughly equally to environmental deterioration (respectively average of 62 and 59%). Because the End-of-Life (EoL) mainly includes recycling with environmental credit accounted for in our 100:100 approach, this stage has globally a positive impact (− 9 to − 98%) on all the impact categories except terrestrial ecotoxicity (58%), radioactive waste (11%), and ozone depletion (8%). Contribution analyses show that if concrete production is one of the important contributing processes over the construction stage, primary steel production is unquestionably the most important process on all the impact categories over the entire life cycle.


These results are of interest for public authorities and the rail industry, in order to consider the full life cycle impacts of transportation infrastructure in a decision-making process with better understanding and inclusion of the environmental constraints. Suggestions are provided in this way for life cycle good practices—for instance as regards gravel recycling choices—and additional research to reduce the impact of current major contributors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. AFNOR (2014) NF EN 15804+A1 Avril 2014—contribution des ouvrages de construction au développement durable—déclarations environnementales sur les produits—règles régissant les catégories de produits de construction

  2. Åkerman J (2011) The role of high-speed rail in mitigating climate change—the Swedish case Europabanan from a life cycle perspective. Transp Res Part Transp Environ 16:208–217. https://doi.org/10.1016/j.trd.2010.12.004

    Article  Google Scholar 

  3. Albalate D, Bel G, Fageda X (2015) Competition and cooperation between high-speed rail and air transportation services in Europe. J Transp Geogr 42:166–174. https://doi.org/10.1016/j.jtrangeo.2014.07.003

    Article  Google Scholar 

  4. Allacker K, Mathieux F, Pennington D, Pant R (2017) The search for an appropriate end-of-life formula for the purpose of the European Commission Environmental Footprint initiative. Int J Life Cycle Assess 22:1441–1458. https://doi.org/10.1007/s11367-016-1244-0

    Article  Google Scholar 

  5. Asplan Viak AS (2011) New Double Track Line Oslo – Ski Life Cycle Assessment of the Follo Line-Infrastructure, https://www.banenor.no/globalassets/documents/prosjekter/follobanen/lca---folloline-infrastrukture_en.pdf. Accessed 28 Jul 2018

  6. Baker J, Lepech M (2009) Treatment of uncertainties in Life Cycle Assessment. Stanford University, https://web.stanford.edu/~bakerjw/Publications/Baker%20Lepech%20(2009)%20LCA%20uncertainties%20ICOSSAR.pdf. Accessed 30 May 2019

  7. Banar M, Özdemir A (2015) An evaluation of railway passenger transport in Turkey using life cycle assessment and life cycle cost methods. Transp Res Part Transp Environ 41:88–105. https://doi.org/10.1016/j.trd.2015.09.017

    Article  Google Scholar 

  8. Bosquet R, Jullien A, Vandanjon P-O et al (2014) Eco-design model of a railway: a method for comparing the energy consumption of two project variants. Transp Res Part Transp Environ 33:111–124. https://doi.org/10.1016/j.trd.2014.08.003

    Article  Google Scholar 

  9. Bueno G, Hoyos D, Capellán-Pérez I (2017) Evaluating the environmental performance of the high speed rail project in the Basque Country, Spain. Res Transp Econ 62:44–56. https://doi.org/10.1016/j.retrec.2017.02.004

    Article  Google Scholar 

  10. Chang B, Kendall A (2011) Life cycle greenhouse gas assessment of infrastructure construction for California’s high-speed rail system. Transp Res Part Transp Environ 16:429–434. https://doi.org/10.1016/j.trd.2011.04.004

    Article  Google Scholar 

  11. Chester M, Horvath A (2010) Life-cycle assessment of high-speed rail: the case of California. Environ Res Lett 5:014003. https://doi.org/10.1088/1748-9326/5/1/014003

    CAS  Article  Google Scholar 

  12. Chester M, Horvath A (2012) High-speed rail with emerging automobiles and aircraft can reduce environmental impacts in California’s future. Environ Res Lett 7:034012. https://doi.org/10.1088/1748-9326/7/3/034012

    Article  Google Scholar 

  13. Chester MV, Ryerson MS (2014) Grand challenges for high-speed rail environmental assessment in the United States. Transp Res Part Policy Pract 61:15–26. https://doi.org/10.1016/j.tra.2013.12.007

    Article  Google Scholar 

  14. CITEPA (2019) Données d’émissions de gaz à effet de serre dans l’air en France métropolitaine, avril 2018, format SECTEN, https://www.citepa.org/images/III-1_Rapports_Inventaires/SECTEN/CITEPA-chiffres-cles-2018-d.zip. Accessed 25 Feb 2019

  15. Civancik-Uslu D, Puig R, Ferrer L, Fullana-i-Palmer P (2019) Influence of end-of-life allocation, credits and other methodological issues in LCA of compounds: an in-company circular economy case study on packaging. J Clean Prod 212:925–940. https://doi.org/10.1016/j.jclepro.2018.12.076

    Article  Google Scholar 

  16. Cour des Comptes (2014) La grande vitesse ferroviaire: un modèle porté au-delà de sa pertinence

  17. D’Alfonso T, Jiang C, Bracaglia V (2015) Would competition between air transport and high-speed rail benefit environment and social welfare? Transp Res Part B Methodol 74:118–137. https://doi.org/10.1016/j.trb.2015.01.007

    Article  Google Scholar 

  18. DELOITTE (2008) Efficacité énergétique et environnementale des modes de transport - synthèse publique. ADEME ; French Ministry of Transportation, https://www.ademe.fr/sites/default/files/assets/documents/51911_synthese-transport.pdf. Accessed 16 May 2019

  19. European Environment Agency (2018) Air quality in Europe — 2018 report. Denmark, https://www.eea.europa.eu/publications/air-quality-in-europe-2018/at_download/file. Accessed 06 Nov 2018

  20. Fries N, Hellweg S (2014) LCA of land-based freight transportation: facilitating practical application and including accidents in LCIA. Int J Life Cycle Assess 19:546–557. https://doi.org/10.1007/s11367-013-0657-2

    CAS  Article  Google Scholar 

  21. Häkkinen T, Mäkelä K (1996) Environmental impact of concrete and asphalt pavements. Technical Research Center of Finland, Espoo

    Google Scholar 

  22. Horvath A (2006) Environmental assessment of freight transportation in the U.S. Int J Life Cycle Assess 11:229–239. https://doi.org/10.1065/lca2006.02.244

    CAS  Article  Google Scholar 

  23. Horvath A, Hendrickson C (1998) Comparison of Environmental Implications of Asphalt and Steel-Reinforced Concrete Pavements. Transportation Research Record 1626:105–113. https://doi.org/10.3141/1626-13

  24. International Union of Railways (2019) High speed lines in the world (summary), https://uic.org/IMG/pdf/20190328_high_speed_lines_in_the_world.pdf. Accessed 16 May 2019

  25. IPCC (2014) In: Core writing team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  26. Jones H, Moura F, Domingos T (2016) Life cycle assessment of high-speed rail: a case study in Portugal. Int J Life Cycle Assess 22:410–422. https://doi.org/10.1007/s11367-016-1177-7

    CAS  Article  Google Scholar 

  27. Kirchherr J, Reike D, Hekkert M (2017) Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling 127:221–232. https://doi.org/10.1016/j.resconrec.2017.09.005

  28. Le Guern Y, Petiot C, Schloesing E (2011) Mode de prise en compte de la fin de vie lors de la réalisation d’analyses de cycle de vie (ACV) « produits » - Etat de l’Art. Bio Intelligence Service

  29. LISEA (2016) The South Europe Atlantic high-speed line—Paris-Bordeaux in 2 hours—summer 2017

  30. Manche-Nature (2016) Scandaleux traitement au désherbant, la suite. In: Manche-Nat. http://manche-nature.fr/scandaleux-traitement-desherbant-suite/. Accessed 5 Aug 2019

  31. Miyoshi C, Givoni M (2013) The environmental case for the high-speed train in the UK: examining the London–Manchester route. Int J Sustain Transp 8:107–126. https://doi.org/10.1080/15568318.2011.645124

    Article  Google Scholar 

  32. Nicholson AL, Olivetti EA, Gregory JR et al (2009) End-of-life LCA allocation methods: open loop recycling impacts on robustness of material selection decisions. IEEE:1–6

  33. Perl AD, Goetz AR (2015) Corridors, hybrids and networks: three global development strategies for high speed rail. J Transp Geogr 42:134–144. https://doi.org/10.1016/j.jtrangeo.2014.07.006

    Article  Google Scholar 

  34. PricewaterhouseCooper (2016) High speed rail international benchmarking study, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/755650/high-speed-rail-international-benchmarkingstudy.PDF. Accessed 05 Aug 2019

  35. Quinet E, et al. (2013) L’évaluation socioéconomique des investissements publics—Rapport final

  36. Ridge L (1998) EUCAR—automotive LCA guidelines—phase 2

  37. Saltelli A, Annoni P (2010) How to avoid a perfunctory sensitivity analysis. Environmental Modelling & Software 25:1508–1517. https://doi.org/10.1016/j.envsoft.2010.04.012

  38. Senat, SNCF-Service environnement (2001) La qualité de l’eau et assainissement en France—Annexe 52—LA S.N.C.F. ET LES PESTICIDES. https://www.senat.fr/rap/l02-215-2/l02-215-246.html. Accessed 5 Aug 2019

  39. Sone S (2015) Comparison of the technologies of the Japanese Shinkansen and Chinese high-speed railways. J Zhejiang Univ-Sci A 16:769–780. https://doi.org/10.1631/jzus.A1500220

    Article  Google Scholar 

  40. Spielmann M, Scholz R (2005) Life cycle inventories of transport services: background data for freight transport. Int J Life Cycle Assess 10:85–94. https://doi.org/10.1065/lca2004.10.181.10

    Article  Google Scholar 

  41. Spielmann M, Bauer C, Dones R (2007) Transport services: Ecoinvent report no. 14. Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  42. Stripple H, Uppenberg S (2010) Life cycle assessment of railways and rail transports - Application in environmental product declarations (EPDs) for the Bothinia Line. Swedish Environmental Research Institute, https://www.ivl.se/download/18.343dc99d14e8bb0f58b75d4/1445517456715/B1943.pdf. Accessed 28 Jul 2018

  43. Svensson N (2006) Life-cycle considerations for environmental management of the Swedish railway infrastructure. Manuscrit de thèse n°1064, Linköping studies in science and technology, Linköping University

  44. The World Bank (2019) Rail lines (total route-km). https://data.worldbank.org/indicator/IS.RRS.TOTL.KM?view=chart. Accessed 16 May 2019

  45. UNPG (2011a) Module d’informations environnmentales de la production de granulats issus de roches massives—données sous format FDES conforme à la norme NF 10-01010. Union Nationale des Producteurs de Granulats

  46. UNPG (2011b) Module d’informations environnmentales de la production de granulats issus de roches meubles - données sous format FDES conforme à la norme NF 10–01010. Union Nationale des Producteurs de Granulats

  47. USAMP/LCA (1998) Life Cycle Inventory of a generic U.S. family Sedan - overview of results USCAR AMP Project. Society of Automotive Engineers, Inc., https://www.sae.org/publications/technical-papers/content/982160/. Accessed 11 Oct 2017

  48. USIRF (2016) Rapport de projet FDES—Analyse de cycle de vie de l’enrobé bitumineux à chaud représentatif français et d’une chaussée en enrobé bitumineux (Document confidentiel). Bio by Deloitte - USIRF

  49. von Rozycki C, Koeser H, Schwarz H (2003) Ecology profile of the German high-speed rail passenger transport system, ICE. Int J Life Cycle Assess 8:83–91. https://doi.org/10.1007/BF02978431

    Article  Google Scholar 

  50. Yue Y, Wang T, Liang S et al (2015) Life cycle assessment of high speed rail in China. Transp Res Part Transp Environ 41:367–376. https://doi.org/10.1016/j.trd.2015.10.005

    Article  Google Scholar 

  51. Zembri P, Libourel E (2017) Towards oversized high-speed rail systems? Some lessons from France and Spain. Transp Res Procedia 25:368–385. https://doi.org/10.1016/j.trpro.2017.05.414

    Article  Google Scholar 

Download references


We would especially like to express our gratitude to LISEA, the concessionaire of the HSR line, which helped us to collect the data relating to the construction works.


This work was funded by the chair ParisTech-Vinci “Eco-design of buildings and infrastructures,” a 5-year collaborative research program started in 2008 and renewed in 2013, conducted by Ecole des Ponts ParisTech, Mines ParisTech, and AgroParisTech thanks to the sponsorship of VINCI.

Author information



Corresponding author

Correspondence to Anne de Bortoli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guido W. Sonnemann

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Bortoli, A., Bouhaya, L. & Feraille, A. A life cycle model for high-speed rail infrastructure: environmental inventories and assessment of the Tours-Bordeaux railway in France. Int J Life Cycle Assess 25, 814–830 (2020). https://doi.org/10.1007/s11367-019-01727-2

Download citation


  • Circular economy
  • France
  • High speed rail infrastructure
  • Life cycle assessment (LCA)
  • Multicriteria environmental impacts
  • Public policies
  • Transportation