Skip to main content

Addressing the use and end-of-life phase of pharmaceutical products in life cycle assessment

A Correction to this article was published on 28 April 2020

This article has been updated



Pharmaceutical residues in the environment can pose significant risks to ecosystems and human beings due to adverse pharma-specific effects. Existing life cycle assessment (LCA) studies do not usually consider the use and end-of-life (EoL) phase of pharmaceuticals and thus exclude relevant potentially toxic emissions of an active pharmaceutical ingredient (API). Therefore, a simplified inventory model for the use and EoL phase of pharmaceuticals is provided by estimating API flows and emissions to the environment.


Both the qualitative description of the use and EoL phase of pharmaceuticals and the quantification of the flows within each life cycle phase are based on literature and expert knowledge. Existing approaches to determine the API emissions are adjusted to make them applicable in LCA. In addition, different uses and EoL scenarios (e.g. depending on the patients’ disposal behaviour) are specified, and assumptions are highlighted. Finally, the model is exemplarily applied to the oral intake of ibuprofen to test its applicability.

Results and discussion

Eleven potential flows and emissions of an API are identified and quantified for different application forms (pulmonary, oral, cutaneous). The model is applied to ibuprofen where potential API emissions result from administered and unused products. Referred to the administered amount of ibuprofen (reference flow), the product is mainly metabolized (73.1%). The unmetabolized (parental) compound enters the sewage treatment plant where it is degraded (13.94%), or emitted to surface water (8.35%), air (0%) and sewage sludge (0.36%). The remainder cannot be clearly assigned to one of the flows (4.25%). The results of this example are hardly comparable to existing measured data because they are related to the functional unit. The effect of assumptions, limitations due to data availability and the geographic scope reveal the need for further research.


To facilitate the consideration of the use and EoL phase of pharmaceuticals in future pharma-LCAs, a simplified inventory model specified for German conditions, is provided which allows to calculate inventory results with easily and publically accessible data. However, remaining challenges such as the lack of data to model the behaviour of metabolites in the sewage treatment plant, missing approaches to include specific pharmaceuticals (e.g. hormones, anticancer drugs), the consideration of other sewage treatment technologies such as ozonization, the integration of API emissions from sewage sludge (e.g. due to the use as fertilizer) or the scope expansion with regard to the geographic validity of the model shall be further examined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Change history

  • 28 April 2020

    The original version of this article unfortunately contained a mistake which was missed during typesetting.


  1. Aguirre-Martínez GV, Owuor MA, Garrido-Pérez C, Salamanca MJ, Del Valls TA, Martín-Díaz ML (2015) Are standard tests sensitive enough to evaluate effects of human pharmaceuticals in aquatic biota? Facing changes in research approaches when performing risk assessment of drugs. Chemosphere 120:75–85.

    CAS  Article  Google Scholar 

  2. Aktories K, Forth W (2013) Allgemeine und spezielle Pharmakologie und Toxikologie. Für Studenten der Medizin, Veterinärmedizin, Pharmazie, Chemie und Biologie sowie für Ärzte, Tierärzte und Apotheker ; mit 305 Tabellen ; [Plus im Web, mediscript]. 11. überarb. Aufl. München: Elsevier Urban & Fischer. Available online at

  3. Al Aukidy M, Verlicchi P, Jelic A, Petrovic M, Barcelò D (2012) Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ 438:15–25.

    CAS  Article  Google Scholar 

  4. Alder AC, Schaffner C, Majewsky M, Klasmeier J, Fenner K (2010) Fate of beta-blocker human pharmaceuticals in surface water: comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Res 44(3):936–948.

    CAS  Article  Google Scholar 

  5. Arnold KE, Brown AR, Ankley GT, Sumpter JP (2014) Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 369 (1656). DOI:

  6. Bartsch J (2010) Umfrage zum Umgang mit alten Arzneimitteln. Hanau

  7. Belboom S, Renzoni R, Verjans B, Léonard A, Germain A (2011) A life cycle assessment of injectable drug primary packaging. Comparing the traditional process in glass vials with the closed vial technology (polymer vials). Int J Life Cycle Assess 16(2):159–167.

    CAS  Article  Google Scholar 

  8. Besse J-P, Kausch-Barreto C, Garric J (2008) Exposure assessment of pharmaceuticals and their metabolites in the aquatic environment. Application to the French situation and preliminary prioritization. Hum Ecol Risk Assess Int J 14(4):665–695.

    CAS  Article  Google Scholar 

  9. Besse J-P, Latour J-F, Garric J (2012) Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39(1):73–86.

    CAS  Article  Google Scholar 

  10. BMG (2018) Arzneimittel richtig aufbewahren und entsorgen. Edited by Federal Ministry of Health. Berlin/Bonn. Available online at, checked on 1/16/2019

  11. BMU (2019) General information waste water: sewage treatment plant. Edited by Federal Ministry for the Environment, Nature Conversation and Nuclear Safety. Berlin. Available online at, checked on 1/10/2019

  12. BPB (2012) Vom Hersteller zu den Verbraucherinnen und Verbrauchern: Zulassung, Herstellung und Vertrieb von Arzneimitteln. Edited by Bundeszentrale für politische Bildung. Bonn. Available online at, checked on 12/7/2018

  13. Braatz A (2019) Disposal of pharmaceuticals in a mechanical-biological treatment plant. E-Mail (04.04.2019) to Maya Yavor. Nauen, 2019

  14. Brandt KK, Amézquita A, Backhaus T, Boxall A, Coors A, Heberer T, Lawrence JR, Lazorchak J, Schönfeld J, Snape JR, Zhu YG, Topp E (2015) Ecotoxicological assessment of antibiotics: a call for improved consideration of microorganisms. Environ Int 85:189–205.

    CAS  Article  Google Scholar 

  15. Bund (2014) Wohin mit abgelaufenen Medikamenten? Edited by Federal Government of Germany. Berlin. Available online at, checked on 1/16/2019

  16. Bund (2019) Siebzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes über die Verbrennung und die Mitverbrennung von Abfällen. 17. BImSchV, revised 5/2/2013. Source: Umwelt-online. Available online at, checked on 1/16/2019

  17. BVL (2018) Product category rules for pharmaceutical products and processes. Distribution of pharmaceuticals to patients at home or in a healthcare facility. Oral communication (06.11.2018) to Marc-William Siegert. Berlin, 2018

  18. Caldwell (2016) Sources of pharmaceutical residues in the environment and their control. In: Hester R, Harrison R (eds) Pharmaceuticals in the Environment, vol 41. The Royal Society of Chemistry (Issues in Environmental Science and Technology), London, pp 92–119

    Google Scholar 

  19. Carballa M, Omil F, Lema JM (2008) Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere 72(8):1118–1123.

    CAS  Article  Google Scholar 

  20. Celiz MD, Tso J, Aga DS (2009) Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem 28(12):2473–2484.

    CAS  Article  Google Scholar 

  21. Celle-Jeanton H, Schemberg D, Mohammed N, Huneau F, Bertrand G, Lavastre V, Le Coustumer P (2014) Evaluation of pharmaceuticals in surface water: reliability of PECs compared to MECs. Environ Int 73:10–21.

    CAS  Article  Google Scholar 

  22. Chèvre N, Coutu S, Margot J, Wynn H, Bader H-P, Scheidegger R, Rossi L (2013) Substance flow analysis as a tool for mitigating the impact of pharmaceuticals on the aquatic system. Water Res 47(9):2995–3005.

    CAS  Article  Google Scholar 

  23. Christensen FM (1998) Pharmaceuticals in the environment--a human risk? Regul Toxicol Pharmacol : RTP 28(3):212–221.

    CAS  Article  Google Scholar 

  24. Cook SM, VanDuinen BJ, Love NG, Skerlos SJ (2012) Life cycle comparison of environmental emissions from three disposal options for unused pharmaceuticals. Environ Sci Technol 46(10):5535–5541.

    CAS  Article  Google Scholar 

  25. Daughton CG, Ruhoy IS (2009) Environmental footprint of pharmaceuticals: the significance of factors beyond direct excretion to sewers. Environ Toxicol Chem 28(12):2495–2521.

    CAS  Article  Google Scholar 

  26. Davies NM (1998) Clinical pharmacokinetics of ibuprofen. The first 30 years. Clin Pharmacokinet 34(2):101–154.

    CAS  Article  Google Scholar 

  27. DECHEMA (2019) Arzneimittel - richtig entsorgt. Edited by DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V. Frankfurt a.M. Available online at, checked on 1/10/2019

  28. DIMDI (2019) Anatomisch-therapeutisch-chemische-Klassifikation mit Tagesdosen. Amtliche Fassung des ATC-Index mit DDD-Angaben für Deutschland im Jahre 2019. With assistance of Uwe Fricke, Judith Günther, Katja Niepraschk-von Dollen, Anette Zawinell. Edited by Deutsches Institut für Medizinische Dokumentation und information (DIMDI). Köln. Available online at, checked on 1/8/2019

  29. DUH (2013) Altmedikamente verantwortungsbewusst entsorgen! Hintergrundpapier zum umweltschonenden Umgang mit abgelaufenen Medikamenten. Edited by Deutsche Umwelthilfe. Hannover. Available online at, checked on 1/9/2019

  30. Ebele AJ, Abou-Elwafa AM, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3(1):1–16.

    Article  Google Scholar 

  31. ECHA (2019) QSAR models. Edited by European chemicals agency. Available online at, checked on 7/3/2019

  32. Efferth T (2006) Molekulare Pharmakologie und Toxikologie. Biologische Grundlagen von Arzneimitteln und Giften. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg (Springer-Lehrbuch). Available online at

  33. Emara Y, Lehmann A, Siegert M-W, Finkbeiner M (2018) Modeling pharmaceutical emissions and their toxicity-related effects in life cycle assessment (LCA): a review. Integr Environ Assess Manag.

  34. EMA (2006) Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. First version. Edited by European Medicines Agency. London. Available online at, checked on 12/4/2018

  35. EMA (2018) Guideline on the environmental risk assessment of medicinal products for human use. Draft. Edited by European Medicines Agency. London. Available online at, checked on 1/8/2019

  36. EU (2000) Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste. Edited by European Parliament and the Council. Brussels. Available online at, checked on 1/30/2019

  37. European Commission (2003) Technical Guidane Document on Risk Assessment. Part I & II. In support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Edited by European Commission. Brussels. Available online at, checked on 1/15/2019

  38. European Commission (2018) Product Environmental Footprint Category Rules Guidance. Version 6.3. Edited by European Commission. Brussels. Available online at, checked on 1/11/2019

  39. Franco A, Struijs J, Gouin T, Price OR (2013a) Evolution of the sewage treatment plant model SimpleTreat: applicability domain and data requirements. Integrated Environ Assess Manage 9(4):560–568.

    CAS  Article  Google Scholar 

  40. Franco A, Struijs J, Gouin T, Price OR (2013b) Evolution of the sewage treatment plant model SimpleTreat: use of realistic biodegradability tests in probabilistic model simulations. Integr Environ Assess Manag 9(4):569–579.

    CAS  Article  Google Scholar 

  41. Gilroy EAM, Klinck JS, Campbell SD, McInnis R, Gillis PL, de Solla SR (2014) Toxicity and bioconcentration of the pharmaceuticals moxifloxacin, rosuvastatin, and drospirenone to the unionid mussel Lampsilis siliquoidea. Sci Total Environ 487:537–544.

    CAS  Article  Google Scholar 

  42. Gómez-Canela C, Miller TH, Bury NR, Tauler R, Barron LP (2016) Targeted metabolomics of Gammarus pulex following controlled exposures to selected pharmaceuticals in water. Sci Total Environ 562:777–788.

    CAS  Article  Google Scholar 

  43. Götz K, Keil F (2007) Arzneimittel in der Umwelt. Medikamentenentsorgung in privaten Haushalten: Ein Faktor bei der Gewässerbelastung mit Arzneimittelwirkstoffen? In UWSF - Z Umweltchem Ökotox 19(3):180–188.

    Article  Google Scholar 

  44. Han EJ, Kim HS, Lee DS (2014) An emission model tracking the life cycle pathways of human pharmaceuticals in Korea. Environ Health Prev Med 19(1):46–55.

    Article  Google Scholar 

  45. Han J, Lee DS (2017) Significance of metabolites in the environmental risk assessment of pharmaceuticals consumed by human. Sci Total Environ 592:600–607.

    CAS  Article  Google Scholar 

  46. Heberer T (2002) Occurence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    CAS  Article  Google Scholar 

  47. Hirsch R (2019) Pharmacokinetic behavior of APIs for pulmonary applications. Oral communication (27.02.2019) to Marc-William Siegert. Cologne/Berlin, 2019

  48. Hörsing M, Ledin A, Grabic R, Fick J, Tysklind M, La Cour JJ, Andersen HR (2011) Determination of sorption of seventy-five pharmaceuticals in sewage sludge. Water Res 45(15):4470–4482.

    CAS  Article  Google Scholar 

  49. ISO (2006a) Environmental management – life cycle assessment – principles and framework (ISO 14040:2006). International Organization for Standardization, Geneva

    Google Scholar 

  50. ISO (2006b) Environmental management – Life cycle assessment – Requirements and guidelines (ISO 14044:2006). International Organization for Standardization, Geneva.

  51. ISOE (2008): Pharmaceuticals for Human Use: Options of Action for Reducing the Contamination of Water Bodies - A practical guide. Edited by Florian Keil. Institute for Social-Ecological Research (ISOE) GmbH. Research Project start. Frankfurt a.M. Available online at, checked on 12/6/2018

  52. Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barcelo D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45(3):1165–1176.

    CAS  Article  Google Scholar 

  53. Johnson AC, Williams RJ (2004) A model to estimate influent and effluent concentrations of estradiol, estrone, and ethinylestradiol at sewage treatment works. Environ Sci Technol 38(13):3649–3658.

    CAS  Article  Google Scholar 

  54. Jones O, Voulvoulis N, Lester J (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36(20):5013–5022.

    CAS  Article  Google Scholar 

  55. Khan SJ, Ongerth JE (2004) Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations. Chemosphere 54(3):355–367.

    CAS  Article  Google Scholar 

  56. Kinrys G, Gold AK, Worthington JJ, Nierenberg AA (2018) Medication disposal practices: increasing patient and clinician education on safe methods. J Int Med Res 46(3):927–939.

    Article  Google Scholar 

  57. Klöpffer W, Grahl B (2009) Ökobilanz (LCA). Ein Leitfaden für Ausbildung und Beruf Weinheim: WILEY-VCH Available online at

  58. Kookana RS, Williams M, Boxall ABA, Larsson D GJ, Gaw S, Choi K et al (2014) Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. In Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 369 (1656). DOI:

  59. Kostich MS, Lazorchak JM (2008) Risks to aquatic organisms posed by human pharmaceutical use. Sci Total Environ 389(2–3):329–339.

    CAS  Article  Google Scholar 

  60. Kümmerer K, Schuster A, Längin A, Happel O, Thoma A, Schneider K et al (2011) Identifizierung und Bewertung ausgewählter Arzneimittel und ihrer Metaboliten (Ab- und Umbauprodukte) im Wasserkreislauf. Edited by German Environment Agency. Dessau-Roßlau. Available online at, checked on 1/11/2019

  61. Landry KA, Boyer TH (2016) Life cycle assessment and costing of urine source separation: focus on nonsteroidal anti-inflammatory drug removal. Water Res 105:487–495.

    CAS  Article  Google Scholar 

  62. Langford K, Thomas KV (2011) Input of selected human pharmaceutical metabolites into the Norwegian aquatic environment. J Environ Monit JEM 13(2):416–421.

    CAS  Article  Google Scholar 

  63. Langner A, Borchert H-H, Mehnert W, Pfeifer S (2011) Biopharmazie. Pharmakokinetik - Bioverfügbarkeit - Biotransformation. 4., völlig neu bearb. und erw. Aufl. Stuttgart: Wiss. Verl.-Ges

  64. Lautz LS, Struijs J, Nolte TM, Breure AM, van der Grinten E, van de Meent D, van Zelm R (2017) Evaluation of SimpleTreat 4.0: simulations of pharmaceutical removal in wastewater treatment plant facilities. Chemosphere 168:870–876.

    CAS  Article  Google Scholar 

  65. Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut (Barking, Essex: 1987) 187:193–201.

    CAS  Article  Google Scholar 

  66. Mackay D (1979) Finding fugacity feasible. Environ Sci Technol 13(10):1218–1223 Available online at , checked on 1/15/2019

  67. Martin LR, Williams SL, Haskard KB, Dimatteo MR (2005) The challenge of patient adherence. Ther Clin Risk Manag 1(3):189–199

    Google Scholar 

  68. Maplecroft (2019) Waste generation and recycling indices 2019 - overview and findings. Edited by Verisk Maplecroft. Available online at, checked on 10/15/2019

  69. Masoner JR, Kolpin DW, Furlong ET, Cozzarelli IM, Gray JL (2016) Landfill leachate as a mirror of today's disposable society: pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States. Environ Toxicol Chem 35(4):906–918.

    CAS  Article  Google Scholar 

  70. Medsafe (2017): Ibuprofen New Zealand Data Sheet. Edited by Medsafe New Zealand Medicines and Medical Devices Safety Authority. Wellington. Available online at, checked on 1/14/2018

  71. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35(5):803–814.

    CAS  Article  Google Scholar 

  72. Monteiro SC, Boxall AB (eds) (2010) Occurence and fate of human pharmaceuticals in the environment. In: Whitacre D (ed) Reviews of environmental contamination and toxicology. Volume 202. ebrary, Inc. New York: Springer (reviews of environmental contamination and toxicology, 202). Available online at

  73. NHS (2012) Greenhouse gas accounting sector guidance for pharmaceutical products and medical devices. Full Guidance. Edited by National Health Service. London. Available online at, checked on 1/9/2019

  74. O'Brien JW, Banks APW, Novic AJ, Mueller JF, Jiang G, Ort C et al (2017) Impact of in-sewer degradation of pharmaceutical and personal care products (PPCPs) population markers on a population model. Environ Science Technol 51(7):3816–3823.

    CAS  Article  Google Scholar 

  75. Ong TTX, Blanch EW, Jones OAH (2018) Predicted environmental concentration and fate of the top 10 most dispensed Australian prescription pharmaceuticals. Environ Sci Pollution Res Int 25(11):10966–10976.

    Article  Google Scholar 

  76. Ortiz de García S, Pinto Pinto G, García Encina P, Irusta Mata R (2013) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465.

    CAS  Article  Google Scholar 

  77. Östman M, Lindberg RH, Fick J, Björn E, Tysklind M (2017) Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 115:318–328.

    CAS  Article  Google Scholar 

  78. Perazzolo C, Morasch B, Kohn T, Magnet A, Thonney D, Chèvre N (2010) Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part I: priority list for environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 29(8):1649–1657.

    Article  Google Scholar 

  79. Pereira AMPT, Silva LJG, Lino CM, Meisel LM, Pena A (2017) A critical evaluation of different parameters for estimating pharmaceutical exposure seeking an improved environmental risk assessment. Sci Total Environ 603-604:226–236.

    CAS  Article  Google Scholar 

  80. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27.

    CAS  Article  Google Scholar 

  81. Pubchem (2019) PubChem Database. Ibuprofen, CID=3672. Edited by National Center for Biotechnology Information. Rockville Pike, Bethesda, MD. Available online at, checked on 4/9/2019

  82. Qi C, Huang J, Wang B, Deng S, Wang Y, Yu G (2018) Contaminants of emerging concern in landfill leachate in China. Rev Emerg Contam 4(1):1–10.

    Article  Google Scholar 

  83. Radjenović J, Petrović M, Barceló D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43(3):831–841.

    CAS  Article  Google Scholar 

  84. Raju G, Sarkar P, Singla E, Singh H, Sharma RK (2016) Comparison of environmental sustainability of pharmaceutical packaging. Perspective Sci 8:683–685.

    Article  Google Scholar 

  85. Razza F, Degli IF, Dobon A, Aliaga C, Sanchez C, Hortal M (2015) Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark. J Clean Prod 102:493–500.

    CAS  Article  Google Scholar 

  86. Sherman J, Le C, Lamers V, Eckelman M (2012) Life cycle greenhouse gas emissions of anesthetic drugs. Anesth Analg 114(5):1086–1090.

    CAS  Article  Google Scholar 

  87. Siegert M-W, Lehmann A, Emara Y, Finkbeiner M (2018) Harmonized rules for future LCAs on pharmaceutical products and processes. Int J Life Cycle Assess 15(6):1542–1057.

    CAS  Article  Google Scholar 

  88. Smook TM, Zho H, Zytner RG (2008) Removal of ibuprofen from wastewater: comparing biodegradation in conventional, membrane bioreactor, and biological nutrient removal treatment systems. Water Sci Technol 57(1):1–8.

    CAS  Article  Google Scholar 

  89. Stevens-Garmon J, Drewes JE, Khan SJ, McDonald JA, Dickenson ERV (2011) Sorption of emerging trace organic compounds onto wastewater sludge solids. Water Res 45(11):3417–3426.

    CAS  Article  Google Scholar 

  90. Struijs J (2013) Evaluation of the model SimpleTreat. Edited by National Institute for Public Health and the Environment. Bilthoven. Available online at, checked on 1/15/2019

  91. Struijs J (2014) SimpleTreat 4.0: a model to predict fate and emission of chemicals in wastewater treatment plants. Background report describing the equations. Edited by National Institute for Public Health and the Environment. Bilthoven. Available online at, checked on 1/10/2019

  92. Thai PK, Jiang G, Gernjak W, Yuan Z, Lai FY, Mueller JF (2014) Effects of sewer conditions on the degradation of selected illicit drug residues in wastewater. Water Res 48:538–547.

    CAS  Article  Google Scholar 

  93. Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G (2017) Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour Technol 224:1–12.

    CAS  Article  Google Scholar 

  94. UBA (2015) Application of SimpleTreat 4.0 in European substance regulations. Edited by Umweltbundesamt. Dessau-Roßlau. Available online at, checked on 1/15/2019

  95. UBA (2018a) Abfallaufkommen. Edited by Umweltbundesamt. Dessau-Roßlau. Available online at, checked on 1/16/2019

  96. UBA (2018b) Ablagerungsquoten der Hauptabfallströme. Edited by Umweltbundesamt. Dessau-Roßlau. Available online at, checked on 4/8/2019

  97. US EPA (2012) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. Edited by United States Environmental Protection Agency. Washington, DC. Available online at, checked on 1/16/2019

  98. VDI (2015) Ressourceneffiziente Wasserkonzepte für Krankenhäuser. VDI ZRE Publikationen: Kurzanalyse Nr. 11. Edited by VDI Zentrum Ressourceneffizienz. Verein Deutscher Ingenieure. Berlin. Available online at, checked on 1/10/2019

  99. Voigt (2018) Disposal of unused pharmaceuticals in hospitals. E-Mail (19.07.2018) to Marc-William Siegert. Berlin, 2018

  100. de Voogt P, Janex-Habibi M-L, Sacher F, Puijker L, Mons M (2009) Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Sci Technol 59(1):39–46.

    CAS  Article  Google Scholar 

  101. WHO (2011) Pharmaceuticals in drinking-water. Edited by World Health Organization. Geneva. Available online at, checked on 12/6/2018

  102. WidO (2018) Anatomisch-therapeutischchemische Klassifikation mit Tagesdosen für den deutschen Arzneimittelmarkt gemäß §73 Abs. 8 Satz 5 SGB V. Beschlussfassung der Arbeitsgruppe ATC/DDD des Kuratoriums für Fragen der Klassifikation im Gesundheitswesen. Edited by Wissenschaftliches Institut der AOK. Available online at…/wido_arz_amtl_atc_beschlussfassung_2018_1218.pdf, checked on 7/5/2019

  103. Winker M, Faika D, Gulyas H, Otterpohl R (2008) A comparison of human pharmaceutical concentrations in raw municipal wastewater and yellowwater. Science Total Environ 399(1–3):96–104.

    CAS  Article  Google Scholar 

  104. WWAP (2017) The United Nations World Water Development Report 2017. Wastewater: the untapped resource. Edited by UNESCO. Paris. Available online at, checked on 1/15/2019

  105. Zampori L, Dotelli G (2014) Design of a sustainable packaging in the food sector by applying LCA. Int J Life Cycle Assess 19(1):206–217.

    Article  Google Scholar 

Download references


This publication is part of a project within the initiative for sustainable pharmacy, funded by the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU). We gratefully acknowledge the engagement of the accompanying group of experts as well as the provided financial support by the DBU.

Author information



Corresponding author

Correspondence to Marc-William Siegert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The original version of this article unfortunately contained a mistake which was missed during typesetting. In Tab. 3, the first parameter of Flow #4 was incorrect.

Responsible editor: Melissa Bilec

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siegert, MW., Lehmann, A., Emara, Y. et al. Addressing the use and end-of-life phase of pharmaceutical products in life cycle assessment. Int J Life Cycle Assess 25, 1436–1454 (2020).

Download citation


  • Inventory • Life cycle assessment • End-of-life • Pharmaceuticals • Product category rules • Use