Prospective cost and environmental impact assessment of battery and fuel cell electric vehicles in Germany

A Correction to this article is available

This article has been updated



The goal of this study was to provide a holistic, reliable, and transparent comparison of battery electric vehicles (BEVs) and fuel cell electric vehicles (FCVs) regarding their environmental impacts (EI) and costs over their whole life cycle. The comprehensive knowledge about EI and costs forms the basis on which to decide which technology should be favored for the future of mobility.


Therefore, a holistic and transparent comparative life cycle assessment (LCA), using the ReCiPe 2016 method, and a life cycle costing were conducted. Special attention was paid to the fuel supply infrastructure for BEV and FCV as these have not been sufficiently considered in previous research. The required infrastructure was calculated for six million electric vehicles (EVs) and the EI and costs were allocated proportional on the functional unit of 1 km driven with an EV. Different scenarios regarding electricity mix, range of the BEV, and vehicle lifetime were calculated. In order to ensure transparency, all inventories and calculations were published in the attached Electronic supplementary material (ESM).

Results and discussion

Detailed results were presented for the impact categories global warming potential (GWP), human toxicity potential non-carcinogenic (HTPnc), surplus ore potential (SOP), and particulate matter formation potential (PMFP). Aggregated results for all midpoint impact categories of the ReCiPe method can be found in the ESM. It was shown that BEVs achieve lower EI than FCVs in most impact categories (e.g., GWP: BEV: 1.40E-01, FCV: 1.68E-01 kg CO2-eq./km) and that the total costs of ownership are as well lower for BEVs (68,900 € vs. 130,100 €). Further, it was found that the fuel supply infrastructure—without electricity supply—contributes a considerable amount to the overall impact per kilometer driven (e.g., 3.7% and 3.3% of the GWP for BEV and FCV, respectively).


Considering mid-size vehicles like the VW e-Golf, it was concluded that BEVs have today a better environmental and financial performance than FCVs. However, the range of the BEV is lower than the range of the FCV (200 vs. 530 km) and both technologies have different stages of maturity. Moreover, the study showed that the fuel supply infrastructure is an important contributor to the overall life cycle impacts and that it is therefore indispensable to include the infrastructure in LCA of electric vehicles. Based on the results, recommendations to utilize the advantage of both BEV (high energy efficiency, lower costs) and FCV (long-distance capability) were made.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Change history

  • 14 February 2020

    The original version of this article unfortunately contained a mistake. Electronic Supplementary Material 1 was incorrect. The correct version is linked in the online version of this correction.



Battery electric vehicle


Balance of plant (control unit for the fuel cell)


Capital expenditures (investment costs)


Environmental impacts


End of life


Electric vehicles


Fuel cell vehicles


Full-load hours


Fuel supply infrastructure (chargers for BEVs and the hydrogen production and distribution in case of FCVs)


Greenhouse gases


Global warming potential


Human toxicity potential


Impact categories


Internal combustion engine vehicles


Life cycle assessment


Life cycle costing


Life cycle impact assessment


Surplus ore potential


Particulate matter formation potential


Surcharges, fees, and taxes, which has to be paid for electricity


Total cost of ownership


Wearing and maintenance


  1. ABB (2018a) Electric Vehicle Charging Infrastructure: Terra multi-standard DC charging station 23. Accessed 17 May 2018

  2. ABB (2018b) Electric Vehicle Charging Infrastructure: Terra multi-standard DC charging station 53. Accessed 17 May 2018

  3. ABL (2018) Technisches Datenblatt WALLBOX eMH1. Accessed 17 May 2018

  4. ADAC (2018) Autokosten Frühjahr/Sommer 2018. Kostenübersicht für über 1.800 aktuelle Neuwagen-Modelle, München

  5. Adolf J, Balzer C, Lois J, Schabla U, Fischedick M, Arnold K, Pastowski A, Schüwer D (2017) SHELL WASSERSTOFF-STUDIE: ENERGIE DER ZUKUNFT? Nachhaltige Mobilität durch Brennstoffzelle und H2

  6. Aggeler D, Canales F, Zelaya H, La Parra D, Coccia A, Butcher N, Apeldoorn O (2010) Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids. In: IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010: 11 - 13 Oct. 2010, Gothenburg, Sweden. IEEE, Piscataway, NJ, pp 1–8

    Google Scholar 

  7. Ahmadi P, Kjeang E (2017) Realistic simulation of fuel economy and life cycle metrics for hydrogen fuel cell vehicles. Int. J. Energy Res. 41(5):714–727.

    Article  Google Scholar 

  8. Asdrubali F, Baldinelli G, D’Alessandro F, Scrucca F (2015) Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew Sust Energ Rev 42:1113–1122.

    Article  Google Scholar 

  9. Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy. Appl. Energy 101:103–111.

    Article  Google Scholar 

  10. Bauer C, Hofer J, Althaus H-J, Del Duce A, Simons A (2015) The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Appl Energy 157:871–883.

    Article  Google Scholar 

  11. Bi Z, Song L, de KR, Mi CC, Keoleian GA (2015) Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system. Appl. Energy 146:11–19.

    CAS  Article  Google Scholar 

  12. Brakelmann H (2004) Netzverstärkungs-Trassen zur Übertragung von Windenergie: Freileitung oder Kabel?

  13. Brunet J, Kotelnikova A, Ponssard J-P (2015) The deployment of BEV and FCEV in 2015. Ecole Polytechnique CNRS

  14. Bubeck S, Tomaschek J, Fahl U (2016) Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany. Transp Policy 50:63–77.

    Article  Google Scholar 

  15. Bundesministerium für Verkehr und digitale Infrastruktur (2017) BMVI - Startschuss für das Bundesprogramm Ladeinfrastruktur

  16. Bundesnetzagentur (2016) Monitoringbericht 2016

  17. Burkhardt J, Patyk A, Tanguy P, Retzke C (2016) Hydrogen mobility from wind energy - A life cycle assessment focusing on the fuel supply. Appl Energy 181:54–64.

    Article  Google Scholar 

  18. Chardonnet C, Vos L d, Genoese F, Roig G, Giordano V, Rapoport S, Bart F, Lacroix T d, Ha T v, Genabet B, Lanoix J-C, Vanhoudt W (2017) Study on early business cases for H2 in energy storage and more broadly power to H2 applications, vol 228. FCH-JU, Brussels, Belgium

    Google Scholar 

  19. Cooney G, Hawkins TR, Marriott J (2013) Life Cycle Assessment of Diesel and Electric Public Transportation Buses. J Ind Ecol 451(7179):n/a–n/a.

    CAS  Article  Google Scholar 

  20. Daimler AG (2008) Environmental Certificate A-Class. Accessed 14 May 2018

  21. dena (2012) dena - Verteilnetzstudie. Ausbau - und Innovationsbedarf der Strom - verteilnetze in Deutschland bis 2030

  22. Destatis (2017) Abfallbilanz (Abfallaufkommen/-verbleib, Abfallintensität, Abfallaufkommen nach Wirtschaftszweigen) - 2015

  23. efacec (2016) HomeCharger. Accessed 17 May 2018

  24. Ekvall T, Assefa G, Björklund A, Eriksson O, Finnveden G (2007) What life-cycle assessment does and does not do in assessments of waste management. Waste Manage. (Oxford) 27(8):989–996.

    Article  Google Scholar 

  25. Ellingsen LA-W, Majeau-Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. J Ind Ecol 18(1):113–124.

    CAS  Article  Google Scholar 

  26. EnBW AG (2018) Stromnetz - Transport - Spannungsebenen. Accessed 15 May 2018

  27. Evangelisti S, Tagliaferri C, Brett DJL, Lettieri P (2017) Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles. J Cleaner Prod 142:4339–4355.

    CAS  Article  Google Scholar 

  28. Fernández RÁ, Cilleruelo FB, Martínez IV (2016) A new approach to battery powered electric vehicles. A hydrogen fuel-cell-based range extender system. Int J Hydrog Energy 41(8):4808–4819.

    CAS  Article  Google Scholar 

  29. German Federal Government (2011) Regierungsprogramm Elektromobilität. Accessed 08 May 2018

  30. (2017) Golf 1.4 TSI BMT (125 ps) Comfortline 5-Türen. Accessed 27 Dec 2018

  31. Graedel TE, Allwood J, Birat J-P, Buchert M, Hagelüken C, Reck BK, Sibley SF, Sonnemann G (2011) What Do We Know About Metal Recycling Rates? J Ind Ecol 15(3):355–366.

    CAS  Article  Google Scholar 

  32. Haddadian G, Khodayar M, Shahidehpour M (2015) Accelerating the Global Adoption of Electric Vehicles: Barriers and Drivers. The Elect J 28(10):53–68.

    Article  Google Scholar 

  33. Hagman J, Ritzén S, Stier JJ, Susilo Y (2016) Total cost of ownership and its potential implications for battery electric vehicle diffusion. Res Transp Bus Manag 18:11–17.

    Article  Google Scholar 

  34. Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. J Ind Ecol 17(1):53–64.

    CAS  Article  Google Scholar 

  35. Held M, Graf R, Wehner D, Eckert S, Faltenbacher M, Weidner S, Braune O (2016) Abschlussbericht: Bewertung der Praxistauglichkeit und Umweltwirkungen von Elektrofahrzeugen, Berlin

  36. Helms H, Jöhrnes J, Hanusch J, Höpfner U, Lambrecht U, Pehnt M (2011) Ergebnisbericht UMBReLA, Heidelberg

  37. Hirscher M (2010) Handbook of hydrogen storage. New materials for future energy storage. Wiley-VCH, Weinheim

    Google Scholar 

  38. Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2016) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22(2):138–147.

    Article  Google Scholar 

  39. ISO (2006a) ISO 14040:2006, Environmental management — Life cycle assessment — Principles and framework. Accessed 11 May 2018

  40. ISO (2006b) ISO 14044:2006, Environmental management — Life cycle assessment — Requirements and guidelines. Accessed 11 May 2018

  41. Kaltschmitt M, Streicher W (2009) Stromerzeugung aus Wasserkraft. In: Kaltschmitt M, Streicher W (eds) Regenerative Energien in Österreich: Grundlagen, Systemtechnik, Umweltaspekte, Kostenanalysen, Potenziale, Nutzung. Vieweg+Teubner, Wiesbaden, pp 59–94

    Google Scholar 

  42. Kara S, Li W, Sadjiva N (2017) Life Cycle Cost Analysis of Electrical Vehicles in Australia. Procedia CIRP 61:767–772.

    Article  Google Scholar 

  43. Kley F (2011) Ladeinfrastruktur für Elektrofahrzeuge: Entwicklung und Bewertung einer Ausbaustrategie auf Basis des Fahrverhaltens. Zugl.: Karlsruhe, KIT, Diss., 2011, Karlsruher Instituts für Technologie

  44. Koj JC, Wulf C, Schreiber A, Zapp P (2017) Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis. Energies 10(7):860.

    CAS  Article  Google Scholar 

  45. Kopp M, Coleman D, Stiller C, Scheffer K, Aichinger J, Scheppat B (2017) Energiepark Mainz. Technical and economic analysis of the worldwide largest Power-to-Gas plant with PEM electrolysis. Int. J. Hydrogen Energy 42(19):13311–13320.

    CAS  Article  Google Scholar 

  46. Kost C, Shammugam S, Jülch V, Nguyen H-T, Schlegl T (2018) Stromgestehungskosten erneuerbare Energien; Fraunhofer ISE. März. Freiburg, Germany, p 2018

    Google Scholar 

  47. LC-impact (2018) Methodology. Accessed 14 Jun 2018

  48. Lombardi L, Tribioli L, Cozzolino R, Bella G (2017) Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA. Int. J. Life Cycle Assess. 22(12):1989–2006.

    CAS  Article  Google Scholar 

  49. Lucas A, Alexandra Silva C, Costa Neto R (2012a) Life cycle analysis of energy supply infrastructure for conventional and electric vehicles. Energy Policy 41:537–547.

    Article  Google Scholar 

  50. Lucas A, Neto RC, Silva CA (2012b) Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector. Int. J. Hydrogen Energy 37(15):10973–10985.

    CAS  Article  Google Scholar 

  51. Luo L, van der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sust Energ Rev 13(6-7):1613–1619.

    CAS  Article  Google Scholar 

  52. Maack (2008) Generation, of the energy carrier HYDROGEN: In context with electricity buffering generation through fuel cells

  53. Mendoza J-MF, Josa A, Rieradevall J, Gabarrell X (2016) Environmental Impact of Public Charging Facilities for Electric Two-Wheelers. J. Ind. Ecol. 20(1):54–66.

    Article  Google Scholar 

  54. Mineralölwirtschaftsverband (2018) Monatlich aktualisierte Kraftstoffpreise als Durchschnittswert Deutschland. Accessed 15 Jun 2018

  55. Miotti M, Hofer J, Bauer C (2017) Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. 22(1):94–110.

    CAS  Article  Google Scholar 

  56. Netze BW (2017) Höhe der Durchschnittsverluste je Spannungsebene 2015

  57. Nordelöf A, Messagie M, Tillman A-M, Ljunggren Söderman M, van Mierlo J (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? Int. J. Life Cycle Assess. 19(11):1866–1890.

    CAS  Article  Google Scholar 

  58. Notter DA, Kouravelou K, Karachalios T, Daletou MK, Haberland NT (2015) Life cycle assessment of PEM FC applications. Electric mobility and μ-CHP. Energy Environ. Sci. 8(7):1969–1985.

    CAS  Article  Google Scholar 

  59. NPE (2011) Zweiter Bericht der Nationalen Plattform Elektromobilität

  60. NPE (2012) Fortschrittsbericht der Nationalen Plattform Elektromobilität (Dritter Bericht)

  61. NPE (2015) Ladeinfrastruktur für Elektrofahrzeuge in Deutschland: Statusbericht und Handlungsempfehlungen 2015

  62. Oswald BR (2007) 380-kV-Salzburgleitung: Auswirkungen der möglichen (Teil)Verkabelung des Abschnittes Tauern-Salzach neu

  63. Parks G, Boyd R, Cornish J, Remick R (2014) Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration

  64. Paster MD, Ahluwalia RK, Berry G, Elgowainy A, Lasher S, McKenney K, Gardiner M (2011) Hydrogen storage technology options for fuel cell vehicles: Well-to-wheel costs, energy efficiencies, and greenhouse gas emissions. Int J Hydrog Energy 36(22):14534–14551.

    CAS  Article  Google Scholar 

  65. Plenz M (2017) Potenzialanalyse Überschussstrom für Power-to-Heat und Power-to-Gas, Studie zur Nutzung überschüssigen erneuerbaren Stroms für die Erzeugung von Wärme/Gas in den Regionen Potsdam/PotsdamMittelmark und Lausitz-Spreewald

  66. Pollet BG, Staffell I, Shang JL (2012) Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochim. Acta 84:235–249.

    CAS  Article  Google Scholar 

  67. Reddi K, Elgowainy A, Sutherland E (2014) Hydrogen refueling station compression and storage optimization with tube-trailer deliveries. Int J Hydrogen Energy 39(33):19169–19181.

    CAS  Article  Google Scholar 

  68. Reddi K, Elgowainy A, Rustagi N, Gupta E (2017) Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen. Int J Hydrog Energy 42(34):21855–21865.

    CAS  Article  Google Scholar 

  69. Reuter B, Faltenbacher M, Schuller O, Whitehouse N, Whitehouse S (2017) New Bus ReFuelling for European Hydrogen Bus Depots - High-Level Techno-Economic Project Summary Report. Leinfelden-Echterdingen, Germany

    Google Scholar 

  70. Rippel KM, Wiede T, Meinecke M, König R (2017) Netzentwicklungsplan Strom 2030. ZWEITER ENTWURF DER ÜBERTRAGUNGS NETZBETREIBER

  71. Robinius M, Linssen J, Grube T, Reuß M, Stenzel P, Syranidis K, Kuckertz P, Stolten D (2018) Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles, vol 408. Julich, Germany

    Google Scholar 

  72. Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D (2015) Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrogen Energy 40(12):4285–4294.

    CAS  Article  Google Scholar 

  73. Schroeder A, Traber T (2012) The economics of fast charging infrastructure for electric vehicles. Energy Policy 43:136–144.

    Article  Google Scholar 

  74. Shafiei E, Davidsdottir B, Leaver J, Stefansson H, Asgeirsson EI (2017) Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: A simulation-based comparison between hydrogen and electricity. J. Cleaner Prod. 141:237–247.

    CAS  Article  Google Scholar 

  75. Simons A, Bauer C (2015) A life-cycle perspective on automotive fuel cells. Appl. Energy 157:884–896.

    CAS  Article  Google Scholar 

  76. Statista (2018)Autogas-Tankstellen in Deutschland bis 2018 | Statistik. Accessed 13 Jun 2018

  77. Tagliaferri C, Evangelisti S, Acconcia F, Domenech T, Ekins P, Barletta D, Lettieri P (2016) Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chem. Eng. Res. Des. 112:298–309.

    CAS  Article  Google Scholar 

  78. Teichmann D, Arlt W, Wasserscheid P (2012) Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy. Int. J. Hydrogen Energy 37(23):18118–18132.

    CAS  Article  Google Scholar 

  79. Thomas CE (2009) Fuel cell and battery electric vehicles compared. Int. J. Hydrogen Energy 34(15):6005–6020.

    CAS  Article  Google Scholar 

  80. Tietge U, Díaz S, Yang Z, Mock P (2017) From laboratory to road international: A comparison of official and real-world fuel consumption and CO2 values for passenger cars in Europe. the United States, China, and Japan, Berlin

    Google Scholar 

  81. Toyota (2016) Mirai Product Information 2016. Accessed 14 May 2018

  82. Toyota (2017) Modellübersicht. Accessed 06 Oct 2017

  83. TransnetBW (2018) Strukturdaten - Netzverluste für das Jahr 2015. Accessed 15 May 2018

  84. Umweltbundesamt (2016) Kennzahlen von Anlagen mit Kraft-Wärme-Kopplung (KWK)

    Google Scholar 

  85. US Environmental Protection Agency (2017) Model Year 2017 Green Vehicle Guide. Accessed 14 May 2018

  86. Varun BIK, Prakash R (2009) LCA of renewable energy for electricity generation systems--A review. Renew Sust Energ Rev 13(5):1067–1073.

    CAS  Article  Google Scholar 

  87. Viktorsson L, Heinonen J, Skulason J, Unnthorsson R (2017) A Step towards the Hydrogen Economy--A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies 10(6):763.

    CAS  Article  Google Scholar 

  88. Volkswagen AG (2010) The Golf: Environmental Commendation Background Report. Accessed 14 May 2018

  89. Volkswagen AG (2018) Der neue e-Golf: Preise - Ausstattungen - Technische Daten. Accessed 14 May 2018

  90. VW (2018) VW e-Golf | Elektroauto | Volkswagen Deutschland. Accessed 15 Jun 2018

  91. Wallbox (2018) Produkt Wallbox: Wallbox Commander. Accessed 17 May 2018

  92. Wang G (2011) Advanced vehicles: Costs, energy use, and macroeconomic impacts. J Power Sources 196(1):530–540.

    CAS  Article  Google Scholar 

  93. Weidner S, Faltenbacher M, François I, Thomas D, Skùlason JB, Maggi C (2018) Feasibility study of large scale hydrogen power-to-gas applications and cost of the systems evolving with scaling up in Germany, Belgium and Iceland. Int J Hydrogen Energy 43(33):15625–15638.

    CAS  Article  Google Scholar 

  94. Wirges J (2016) Planning the Charging Infrastructure for Electric Vehicles in Cities and Regions. Karlsruher Instituts für Technologie

  95. Wu G, Inderbitzin A, Bening C (2015) Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy 80:196–214.

    Article  Google Scholar 

Download references


We thank T. Smolinka (Fraunhofer ISE) and N. Rice (ITM Power) for their help in preparing the inventories for the PEM electrolyzer.

Author information



Corresponding author

Correspondence to Kai Bekel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Wulf-Peter Schmidt

Electronic supplementary material


(XLSX 427 kb)


(XLSX 120 kb)


(XLSX 5431 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bekel, K., Pauliuk, S. Prospective cost and environmental impact assessment of battery and fuel cell electric vehicles in Germany. Int J Life Cycle Assess 24, 2220–2237 (2019).

Download citation


  • Battery electric vehicles
  • Fuel cell electric vehicles
  • Life cycle assessment
  • Life cycle costing
  • Transport
  • Sustainable transportation