Regionalized aquatic ecotoxicity characterization factor for zinc emitted to soil accounting for speciation and the transfer through groundwater

Abstract

Purpose

The goal of this study is to calculate regionalized fate and characterization factors for zinc (Zn) emitted to soil considering the Zn transfer through groundwater in USETox and Zn speciation in soil, groundwater, and surface water using regionalized soil, subsoil, and freshwater parameters.

Methods

Partition coefficients for Zn in soil and water and effect factors (EF) are calculated using the WHAM7 software. Soil and watershed maps are intersected with a geographic information system software to obtain native geographic resolution. USETox is modified by linking (a) the soil with subsoil and groundwater compartment and (b) subsoil and groundwater compartment to the freshwater compartment. Soil to water fate factors (FFsw) for each native resolution cell are calculated using these soil, subsoil, and watershed partition coefficients with the modified version of USETox. These specific FFsw’s are multiplied with bioavailability factors (BF) and effect factors (EF) to generate characterization factors (CFsw) for all the native resolution cells. The results obtained at the native resolution scale are aggregated at different more operational regionalization scales: country, continent, and global level, with the corresponding spatial variability determination. The newly obtained results are compared with the default values of USETox.

Results and discussion

Regionalized freshwater ecotoxicity characterization factors for Zn emitted to soil have a global spatial variability of 3 orders of magnitude. The aggregated global value is in the same order of magnitude with the default USETox value. The spatial variability of soil to water fate (FFsw) and the characterization factors (CFsw) for Zn within each watershed are quantified. The results are illustrated on a world map for all the native resolution cells. With the exception of Europe, all the regional and continental FFsw and CFsw varied over 2 orders of magnitude.

Conclusions

The inclusion of the transfer through groundwater for Zn soil emissions in fate and in characterization calculation along with the Zn speciation allow better prediction of the potential impacts in freshwater systems. The spatial variability of Zn CFsw at continental scale is close to the uncertainty of USEtox’s CFsw (2 orders of magnitude), meaning that using a continental level CFsw seems a reasonable compromise between a too intensive data collection and imprecise impact assessment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. ATSDR (2005) Toxicological Profile For Zinc

  2. BGS_NERC (2017) British Geological Survey—Natural Environment Research Council. Retrieved from http://www.bgs.ac.uk/gbase/sampleIndexMaps/Sedforegs.html. Accessed 10 Oct 2017

  3. Boulay AM, Bouchard C, Bulle C, Deschenes L, Margni M (2011) Categorizing water for LCA inventory. Int J Life Cycle Assess 16(7):639–651

    CAS  Article  Google Scholar 

  4. CCME (2016) Canadian water quality guidelines for the protection of aquatic life: zinc. Canadian Council of the Ministers of the Environment

  5. Cheng T, Allen HE (2006) Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters. J Environ Manag 80(3):222–229

    CAS  Article  Google Scholar 

  6. Cheng T, Schamphelaere KD, Lofts S, Janssen C, Allen HE (2005) Measurement and computation of zinc binding to natural dissolved organic matter in European surface waters. Anal Chim Acta 542(2):230–239

    CAS  Article  Google Scholar 

  7. De Schamphelaere KA, Lofts S, Janssen CR (2004) Bioavailability models for predicting actue and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters. Environ Toxicol Chem 24(5):1190–1197

    Article  Google Scholar 

  8. de Souza Machado AA, Spencer K, Kloas W, Toffolon M, Zarfl C (2016) Metal fate and effects in estuaries: a review and conceptual model for better understanding of toxicity. Sci Total Environ 541:268–281

    Article  Google Scholar 

  9. Degryse F, Smolders E, Parker DR (2009) Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications—a review. Eur J Soil Sci 60:590–612

    CAS  Article  Google Scholar 

  10. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20(10):2383–2396

    Article  Google Scholar 

  11. Diamond ML, Gandhi N, Adams WJ, Atherton J, Bhavsar SP, Bulle C, Campbell PG, Dubreuil A, Fairbrother A, Farley K (2010) The Clearwater consensus: the estimation of metal hazard in fresh water. Int J Life Cycle Assess 15(2):143–147

    CAS  Article  Google Scholar 

  12. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1):105–134

    Article  Google Scholar 

  13. Dong Y, Gandhi N, Hauschild MZ (2014) Development of comparative toxicity potentials of 14 cationic metals in freshwater. Chemosphere 112:26–33

    CAS  Article  Google Scholar 

  14. Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33(11):1291–1295

    CAS  Article  Google Scholar 

  15. Fulton JW, Koerkle EH, McAuley SD, Hoffman SA, Zarr LF (2005) Hydrogeologic setting and conceptual hydrologic model of the Spring Creek Basin, Centre County, Pennsylvania, June 2005

  16. Gandhi N (2011) Improvements in hazard & life cycle impact assessment method for metals in freshwaters-addressing issues of metal, speciation, fate, exposure and ecotoxicity

  17. Gandhi N, Diamond ML, van de Meent D, Huijbregts MAJ, Peijnenburg WJGM, Guinée J (2010) New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc. Environ Sci Technol 44(13):5195–5201

    CAS  Article  Google Scholar 

  18. Gandhi N, Diamond M, Huijbregts MJ, Guinée J, Peijnenburg WGM, van de Meent D (2011a) Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. Int J Life Cycle Assess 16(8):774–787

    CAS  Article  Google Scholar 

  19. Gandhi N, Huijbregts MAJ, van de Meent D, Peijnenburg WJGM, Guinée J, Diamond ML (2011b) Implications of geographic variability on comparative toxicity potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. Chemosphere 82(2):268–277

    CAS  Article  Google Scholar 

  20. GEMStatPortal (2017) International Centre for Water Resources and Global Change (ICWRGC)

  21. Hassan S, Garrison A, Allen H, Di Toro D, Ankley G (1996) Estimation of partition coefficients for five trace metals in sandy sediments and application to sediment quality criteria. Environ Toxicol Chem 15(12): 2198–2208

  22. Haye S, Slaveykova VI, Payet J (2007) Terrestrial ecotoxicity and effect factors of metals in life cycle assessment (LCA). Chemosphere 68(8):1489–1496

    CAS  Article  Google Scholar 

  23. Hellweg S, Fischer U, Hofstetter TB, Hungerbühler K (2005) Site-dependent fate assessment in LCA: transport of heavy metals in soil. J Clean Prod 13(4):341–361

    Article  Google Scholar 

  24. Helmes RJ, Huijbregts MA, Henderson AD, Jolliet O (2012) Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int J Life Cycle Assess 17(5):646–654

    CAS  Article  Google Scholar 

  25. Henderson A, Hauschild M, van de Meent D, Huijbregts MJ, Larsen H, Margni M, McKone T, Payet J, Rosenbaum R, Jolliet O (2011) USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16(8):701–709

    CAS  Article  Google Scholar 

  26. Humbert S, Schryver AD, Bengoa X, Margni M, Jolliet O (2014) IMPACT 2002+: user guide (version adapted by Quantis). Lausanne, Switzerland, Quantis International. Q 2.21

  27. HWSD-database (2014) 2015, from http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/. Accessed 8 Mar 2015

  28. Iqbal MZ (1999) Role of macropores in solute transport under ponded water condition produced by laboratory simulated intense storms. Groundwater 37(5):674–681

    CAS  Article  Google Scholar 

  29. Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). J Hydrol 338(3):237–250

    Article  Google Scholar 

  30. Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press

  31. Lautier A, Rosenbaum RK, Margni M, Bare J, Roy P-O, Deschênes L (2010) Development of normalization factors for Canada and the United States and comparison with European factors. Sci Total Environ 409(1):33–42

    CAS  Article  Google Scholar 

  32. Lofts S (2012) User’s guide to WHAM7, WHAM7 Windermere Humic Aqueous Model, version 7

  33. Lofts S, Tipping E (1998) An assemblage model for cation binding by natural particulate matter. Geochim Cosmochim Acta 62:2609–2625

    CAS  Article  Google Scholar 

  34. Margat J (2008) Les eaux souterraines dans le monde

  35. Menció A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. J Hydrol 352(3–4):355–366

    Article  Google Scholar 

  36. Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38(23):6177–6192

    CAS  Article  Google Scholar 

  37. Owsianiak M, Rosenbaum RK, Huijbregts MA, Hauschild MZ (2013) Addressing geographic variability in the comparative toxicity potential of copper and nickel in soils. Environ Sci Technol 47(7):3241–3250

    CAS  Article  Google Scholar 

  38. Owsianiak M, Holm PE, Fantke P, Christiansen KS, Borggaard OK, Hauschild MZ (2015) Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: the influence of aging and emission source. Environ Pollut 206:400–410

    CAS  Article  Google Scholar 

  39. Pizzol M, Christensen P, Schmidt J, Thomsen M (2011) Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: a comparison between eight different methodologies for life cycle impact assessment (LCIA). J Clean Prod 19(6):687–698

    CAS  Article  Google Scholar 

  40. Plouffe G (2015) Intégrer la spéciation des métaux en écotoxicité terrestre pour l’analyse du cycle de vie: le cas du zinc PhD Thesis, Université de montreal

  41. Plouffe G, Bulle C, Deschênes L (2015) Assessing the variability of the bioavailable fraction of zinc at the global scale using geochemical modeling and soil archetypes. Int J Life Cycle Assess 20:527–540

    CAS  Article  Google Scholar 

  42. Plouffe G, Bulle C, Deschênes L (2016) Characterization factors for zinc terrestrial ecotoxicity including speciation. Int J Life Cycle Assess 21:523–535

    CAS  Article  Google Scholar 

  43. Rosenbaum RK, Margni M, Jolliet O (2007) A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environ Int 33(5):624–634

    Article  Google Scholar 

  44. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MA, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    CAS  Article  Google Scholar 

  45. Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34(7):1125–1131

    Article  Google Scholar 

  46. Sauvé S, Manna S, Turmel M-C, Roy AG, Courchesne F (2003) Solid−solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ Sci Technol 37(22):5191–5196

    Article  Google Scholar 

  47. Shiller AM, Boyle E (1985) Dissolved zinc in rivers. Nature 317(6032):49–52

    CAS  Article  Google Scholar 

  48. Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4(1):3–47

    CAS  Article  Google Scholar 

  49. U. S. D. o. t. Interior and U. S. G. Survey, US Geol Surv Sci Investig Rep: 2005–5091, 2083p

  50. UN-Global (2016) CEO Water Mandate: interactive database of the world’s river basins, UN Global Compact

  51. Wiken EB (1996) Perspective on Canada’s ecosystems: an overview of the terrestrial and marine ecozones. Canadian Council on Ecological Areas

  52. Winter TC (1998) Ground water and surface water: a single resource. DIANE Publishing Inc.

Download references

Acknowledgements

The authors would like to thank Dr. Genevieve Plouffe and Lycia Aziz from CIRAIG, Dmytro Lisniak from UNESCO, and Dr. Yan Dong from DTU for providing their shares of expertise, data, and their very much appreciated contribution. The International Life Cycle Chair (a research unit of the CIRAIG) would like to thank its industrial partners for their financial support: ArcelorMittal, Bombardier, Mouvement des caisses Desjardins, Hydro-Québec, LVMH, Michelin, Nestlé, RECYC-QUÉ-BEC, RONA, SAQ, Solvay, Total, Umicore, and Veolia Environment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rifat-Ara Karim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Ralph K. Rosenbaum

Electronic supplementary material

ESM 1

(PDF 780 kb)

ESM 2

(XLSX 1218 kb)

ESM 3

(XLSX 4183 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karim, R., Deschênes, L. & Bulle, C. Regionalized aquatic ecotoxicity characterization factor for zinc emitted to soil accounting for speciation and the transfer through groundwater. Int J Life Cycle Assess 24, 2008–2022 (2019). https://doi.org/10.1007/s11367-019-01633-7

Download citation

Keywords

  • Characterization factors
  • Freshwater ecotoxicity
  • Groundwater
  • Life cycle impact assessment (LCIA)
  • Life cycle assessment (LCA)
  • Metal speciation
  • Subsoil
  • Zn