Skip to main content
Log in

LCA of aquaculture systems: methodological issues and potential improvements

  • Review
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The aquaculture sector is the fastest growing food production industry. Life-cycle assessment (LCA) can be a useful tool to assess its environmental impacts and ensure environmentally sustainable development. Years ago, critical reviews of LCA methodology have been conducted in that field to evaluate methodological practice. However, how effective were these reviews in improving LCA application? Are there any remaining issues that LCA practitioners should address in their practice?

Methods

We tackle the above questions by critically reviewing all LCA cases applied to aquaculture and aquafeed production systems from a methodological point of view. A total of 65 studies were retrieved, thus tripling the scope of previous reviews. The studies were analysed following the main phases of the LCA methodology as described in the ISO standards, and the authors’ choices were extracted to identify potential trends in the LCA practice.

Results and discussion

We identified five main methodological issues, which still pose challenges to LCA practitioners: (i) the functional unit not always reflecting the actual function of the system, (ii) the system boundary often being too restricted, (iii) the multi-functionality of processes too often being handled with economic allocation while more recommendable ways exist, (iv) the impact coverage not covering all environmental impacts relevant to aquaculture and (v) the interpretation phase usually lacking critical discussion of the methodological limitations. We analysed these aspects in depth, highlighting trends and tendencies.

Conclusions

For each of the five remaining issues, we provided recommendations to be integrated by practitioners in their future LCA practice. We also developed a brief research agenda to address the future needs of LCA in the aquaculture sector. The first need is that emphasis should be put on the construction of aquaculture life-cycle inventory databases with a special need for developing countries and for post-farming processes. Additionally, method developers should develop and/or refine characterisation models for missing impact pathways to better cover all relevant impacts of seafood farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdou K, Aubin J, Romdhane MS, le Loc’h F, Lasram FBR (2017a) Environmental assessment of seabass (Dicentrarchus labrax) and seabream (Sparus aurata) farming from a life cycle perspective: a case study of a Tunisian aquaculture farm. Aquaculture 471:204–2012

    Article  Google Scholar 

  • Abdou K, Ben Rais Lasram F, Romdhane MS, le Loc’h F, Aubin J (2017b) Rearing performances and environmental assessment of sea cage farming in Tunisia using life cycle assessment (LCA) combined with PCA and HCPC. Int J Life Cycle Assess 23:1049–1062. https://doi.org/10.1007/s11367-017-1339-2

    Article  CAS  Google Scholar 

  • Arismendi I, Soto D, Penaluna B et al (2009) Aquaculture, non-native salmonid invasions and associated declines of native fishes in northern Patagonian lakes. Freshw Biol 54:1135–1147

    Article  CAS  Google Scholar 

  • Aubin J (2013) Life cycle assessment as applied to environmental choices regarding farmed or wild-caught fish. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 8:1–10

    Google Scholar 

  • Aubin J, Baruthio A, Mungkung R, Lazard J (2015) Environmental performance of brackish water polyculture system from a life cycle perspective: a Filipino case study. Aquaculture 435:217–227

    Article  Google Scholar 

  • Aubin J, Fontaine C (2014) Impacts of producing bouchot mussels in Mont-Saint-Michel Bay (France) using LCA with emphasis on potential climate change and eutrophication. In: Proceedings of the 9th international conference on life cycle assessment in the agri-food sector environmental, pp 64–69

  • Aubin J, Papatryphon E, Van der Werf HMG et al (2006) Characterisation of the environmental impact of a turbot (Scophthalmus maximus) re-circulating production system using life cycle assessment. Aquaculture 261:1259–1268

    Article  Google Scholar 

  • Aubin J, Papatryphon E, van der Werf HMG, Chatzifotis S (2009) Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment. J Clean Prod 17:354–361

    Article  CAS  Google Scholar 

  • Avadí A, Fréon P (2015) A set of sustainability performance indicators for seafood: direct human consumption products from Peruvian anchoveta fisheries and freshwater aquaculture. Ecol Indic 48:518–532

  • Avadí A, Pelletier N, Aubin J, Ralite S, Núñez J, Fréon P (2015) Comparative environmental performance of artisanal and commercial feed use in Peruvian freshwater aquaculture. Aquaculture 435:52–66

    Article  Google Scholar 

  • Ayer N, Martin S, Dwyer RL, Gace L, Laurin L (2016) Environmental performance of copper-alloy net-pens: life cycle assessment of Atlantic salmon grow-out in copper-alloy and nylon net-pens. Aquaculture 453:93–103

    Article  CAS  Google Scholar 

  • Ayer NW, Tyedmers PH (2009) Assessing alternative aquaculture technologies: life cycle assessment of salmonid culture systems in Canada. J Clean Prod 17:362–373. https://doi.org/10.1016/j.jclepro.2008.08.002

    Article  CAS  Google Scholar 

  • Ayer NW, Tyedmers PH, Pelletier NL, Sonesson U, Scholz A (2007) Co-product allocation in life cycle assessments of seafood production systems: review of problems and strategies. Int J Life Cycle Assess 12:480–487

    Article  CAS  Google Scholar 

  • Baruthio A, Aubin J, Mungkung R et al (2008) Environmental assessment of Filipino fish/prawn polyculture using life cycle assessment. In: Proceedings of the 6th international conference on LCA in the agri-food sector. Zurich, Switzerland, pp 242–247

  • Besson M, Aubin J, Komen H, Poelman M, Quillet E, Vandeputte M, van Arendonk JAM, de Boer IJM (2016) Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J Clean Prod 116:100–109

    Article  Google Scholar 

  • Bohnes FA, Hauschild MZ, Schlundt J, Laurent A (2018) Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Reviews in Aquaculture. https://doi.org/10.1111/RAQ.12280

  • Bijster M, Guignard C, Hauschild M et al (2017) USEtox 2.0 Documentation (v1)

  • Boissy J, Aubin J, Drissi A, van der Werf HMG, Bell GJ, Kaushik SJ (2011) Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture 321:61–70

    Article  Google Scholar 

  • Bosma R, Anh PT, Potting J (2011) Life cycle assessment of intensive striped catfish farming in the Mekong Delta for screening hotspots as input to environmental policy and research agenda. Int J Life Cycle Assess 16:903–915

    Article  Google Scholar 

  • Boxman SE, Zhang Q, Bailey D, Trotz MA (2016) Life cycle assessment a commercial-scale freshwater aquaponic system. Environ Eng Sci 34:299–311

    Article  CAS  Google Scholar 

  • Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942

    Article  Google Scholar 

  • Cao L, Diana JS, Keoleian GA (2013) Role of life cycle assessment in sustainable aquaculture. Rev Aquac 5:61–71

    Article  Google Scholar 

  • Cao L, Diana JS, Keoleian GA, Lai Q (2011) Life cycle assessment of Chinese shrimp farming systems targeted for export and domestic sales. Environ Sci Technol 45:6531–6538

    Article  CAS  Google Scholar 

  • Cashion T, Hornborg S, Ziegler F, Hognes ES, Tyedmers P (2016) Review and advancement of the marine biotic resource use metric in seafood LCAs: a case study of Norwegian salmon feed. Int J Life Cycle Assess 21:1106–1120

    Article  Google Scholar 

  • Cashion T, Tyedmers P, Parker RWR (2017) Global reduction fisheries and their products in the context of sustainable limits. Fish Fish. https://doi.org/10.1111/faf.12222,18,1026,1037

  • Chaudhary A, Verones F, De Baan L, Hellweg S (2015) Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ Sci Technol 49:9987–9995

    Article  CAS  Google Scholar 

  • Chen X, Samson E, Tocqueville A, Aubin J (2015) Environmental assessment of trout farming in France by life cycle assessment: using bootstrapped principal component analysis to better define system classification. J Clean Prod 87:87–95

    Article  Google Scholar 

  • Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett 12:1–11

    Google Scholar 

  • Dekamin M, Veisi H, Safari E, Liaghati H, Khoshbakht K, Dekamin MG (2015) Life cycle assessment for rainbow trout (Oncorhynchus mykiss) production systems: a case study for Iran. J Clean Prod 91:43–55

    Article  Google Scholar 

  • Diana JS (2009) Aquaculture production and biodiversity conservation. Bioscience 59:27–38

    Article  Google Scholar 

  • Efole Ewoukem T, Aubin J, Mikolasek O, Corson MS, Tomedi Eyango M, Tchoumboue J, van der Werf HMG, Ombredane D (2012) Environmental impacts of farms integrating aquaculture and agriculture in Cameroon. J Clean Prod 28:208–214

    Article  Google Scholar 

  • Emanuelsson A, Ziegler F, Pihl L, Sköld M, Sonesson U (2014) Accounting for overfishing in life cycle assessment: new impact categories for biotic resource use. Int J Life Cycle Assess 19:1156–1168

    Article  Google Scholar 

  • Ellingsen H, Aanondsen SA (2006) Environmental impacts of wild caught cod and farmed salmon—a comparison with chicken. Int J Life Cycle Assess 11:60–65

    Article  Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture. food and agriculture organisation of the United Nations, Rome, IT

  • Forchino AA, Lourguioui H, Brigolin D, Pastres R (2017) Aquaponics and sustainability: the comparison of two different aquaponic 2 techniques using the life cycle assessment (LCA). Aquac Eng 77:80–88

    Article  Google Scholar 

  • Ford JS, Pelletier NL, Ziegler F, Scholz AJ, Tyedmers PH, Sonesson U, Kruse SA, Silverman H (2012) Proposed local ecological impact categories and indicators for life cycle assessment of aquaculture: a Salmon aquaculture case study. J Ind Ecol 16:254–265

    Article  Google Scholar 

  • Fréon P, Durand H, Avadí A, Huaranca S, Orozco Moreyra R (2017) Life cycle assessment of three Peruvian fishmeal plants: toward a cleaner production. J Clean Prod 145:50–63

    Article  Google Scholar 

  • García García B, Rosique Jiménez C, Aguado-Giménez F, García García J (2016) Life cycle assessment of gilthead seabream (Sparus aurata) production in offshore fish farms. Sustainability 8:1228

    Article  Google Scholar 

  • Grönroos J, Seppälä J, Silvenius F, Mäkinen T (2006) Life cycle assessment of Finnish cultivated rainbow trout. Boreal Environ Res 11:401–414

    Google Scholar 

  • Hellweg S, Mila i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344 (6188):1109–1113

  • Henriksson P, Rico A, Zhang W (2015) Comparison of Asian aquaculture products by use of statistically supported life cycle assessment—supporting information. Sci Technol 49:14176–14183

    Article  CAS  Google Scholar 

  • Henriksson PJG, Dickson M, Allah AN, al-Kenawy D, Phillips M (2017a) Benchmarking the environmental performance of best management practice and genetic improvements in Egyptian aquaculture using life cycle assessment. Aquaculture 468:53–59

    Article  Google Scholar 

  • Henriksson PJG, Guinée JB, Kleijn R, De Snoo GR (2012) Life cycle assessment of aquaculture systems—a review of methodologies. Int J Life Cycle Assess 17:304–313

    Article  Google Scholar 

  • Henriksson PJG, Tran N, Mohan CV, Chan CY, Rodriguez UP, Suri S, Mateos LD, Utomo NBP, Hall S, Phillips MJ (2017b) Indonesian aquaculture futures - evaluating environmental and socioeconomic potentials and limitations. J Clean Prod 162:1482–1490

    Article  Google Scholar 

  • Huijbregts M, Hauschild M, Margni M et al (2015a) USEtox 2.0 user manual: inorganic substances (v2)

  • Huijbregts M, Meent D van de, Margni M et al (2015b) USEtox 2.0 user manual: organic substances (v2)

  • Iribarren D, Dagá P, Moreira MT, Feijoo G (2012a) Potential environmental effects of probiotics used in aquaculture. Aquac Int 20:779–789

    Article  Google Scholar 

  • Iribarren D, Moreira MT, Feijoo G (2010a) Revisiting the life cycle assessment of mussels from a sectorial perspective. J Clean Prod 18:101–111

    Article  Google Scholar 

  • Iribarren D, Moreira MT, Feijoo G (2010b) Life cycle assessment of fresh and canned mussel processing and consumption in Galicia (NW Spain). Resour Conserv Recycl 55:106–117

    Article  Google Scholar 

  • Iribarren D, Moreira MT, Feijoo G (2010c) Implementing by-product management into the life cycle assessment of the mussel sector. Resour Conserv Recycl 54:1219–1230

    Article  Google Scholar 

  • Iribarren D, Moreira MT, Feijoo G (2012b) Life cycle assessment of aquaculture feed and application to the turbot sector. Int J Environ Res 6:837–848

    CAS  Google Scholar 

  • ISO (2006a) ISO 14040:2006—environmental management—life cycle assessment - principles and framework. Geneva, Switzerland

  • ISO (2006b) ISO 14044:2006—environmental management—life cycle assessment—requirements and guidelines. Geneva, Switzerland

  • Jerbi MA, Aubin J, Garnaoui K, Achour L, Kacem A (2012) Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquac Eng 46:1–9

    Article  Google Scholar 

  • Jolliet O, Antón A, Boulay A-M, Cherubini F, Fantke P, Levasseur A, McKone TE, Michelsen O, Milà i Canals L, Motoshita M, Pfister S, Verones F, Vigon B, Frischknecht R (2018) Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-018-1443-y

  • Jonell M, Henriksson PJG (2015) Mangrove-shrimp farms in Vietnam-comparing organic and conventional systems using life cycle assessment. Aquaculture 447:66–75

    Article  Google Scholar 

  • Kluts IN, Potting J, Bosma RH, Phong LT, Udo HMJ (2012) Environmental comparison of intensive and integrated agriculture-aquaculture systems for striped catfish production in the Mekong Delta, Vietnam, based on two existing case studies using life cycle assessment. Rev Aquac 4:195–208

    Article  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434

    Article  CAS  Google Scholar 

  • Langlois J, Fréon P, Delgenes J-P et al (2012) Biotic resources extraction impact assessment in LCA of fisheries. In: 8th international conference on life cycle assessment in the agri-food sector. Saint-Malo (France), pp 517–522

  • Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of Carbon Footprint as Indicator of Environmental Sustainability. Environmental Science & Technology 46(7):4100–4108

  • Laurent A, Bakas I, Clavreul J et al (2014) Review of LCA studies of solid waste management systems. Part I: Lessons learned and perspectives. Waste Manag 34:573–588

    Article  Google Scholar 

  • Laurent A, Weidema B, Bare J et al (2018) Methodological review and detailed guidance for the life cycle interpretation phase. Submitted to international journal of life cycle assessment (06/2018)

  • Lourguioui H, Brigolin D, Boulahdid M, Pastres R (2017) A perspective for reducing environmental impacts of mussel culture in Algeria. Int J Life Cycle Assess 22:1266–1277

    Article  CAS  Google Scholar 

  • Lozano S, Iribarren D, Moreira MT, Feijoo G (2010) Environmental impact efficiency in mussel cultivation. Resour Conserv Recycl 54:1269–1277

    Article  Google Scholar 

  • McGrath KP, Pelletier NL, Tyedmers PH (2015) Life cycle assessment of a novel closed-containment salmon aquaculture technology. Environ Sci Technol 49:5628–5636

    Article  CAS  Google Scholar 

  • Medeiros MV, Aubin J, Camargo AFM (2017) Life cycle assessment of fish and prawn production: comparison of monoculture and polyculture freshwater systems in Brazil. J Clean Prod 156:528–537

    Article  Google Scholar 

  • Mungkung R, Aubin J, Prihadi TH, Slembrouck J, van der Werf HMG, Legendre M (2013) Life cycle assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. J Clean Prod 57:249–256

    Article  Google Scholar 

  • Mungkung R, Udo de Haes H, Clift R (2006) Potentials and limitations of life cycle assessment in setting ecolabelling criteria: a case study of Thai shrimp aquaculture product. Int J Life Cycle Assess 11:55–59

    Article  Google Scholar 

  • Naylor R, Hindar K, Fleming IA et al (2005) Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience 55:427–437

    Article  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024

    Article  CAS  Google Scholar 

  • Nhu TT, Schaubroeck T, Henriksson PJG, Bosma R, Sorgeloos P, Dewulf J (2016) Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA. Environ Pollut 219:156–165

    Article  CAS  Google Scholar 

  • Ottinger M, Clauss K, Kuenzer C (2016) Aquaculture: relevance, distribution, impacts and spatial assessments - a review. Ocean Coast Manag 119:244–266

    Article  Google Scholar 

  • Pahri SDR, Mohamed AF, Samat A (2015) LCA for open systems: a review of the influence of natural and anthropogenic factors on aquaculture systems. Int J Life Cycle Assess 20:1324–1337

    Article  Google Scholar 

  • Pahri SDR, Mohamed AF, Samat A (2016) Life cycle assessment of cockles (Anadara granosa) farming: a case study of Malaysia. Environ Asia 9:80–90

    Google Scholar 

  • Papatryphon E, Petit J, Kaushik SJ, Van Der Werf HMG (2004a) Environmental impact assessment of salmonid feeds using life cycle assessment (LCA). Ambio 33:316–323

    Article  Google Scholar 

  • Papatryphon E, Petit J, Werf HMG van der, Kaushik SJ (2004b) Life cycle assessment of trout farming in France: a farm level approach. In: Proceedings from the 4th international conference, October 6–8, 2003, Bygholm, Denmark, pp 71–77

  • Parker R (2012) Review of life cycle assessment research on products derived from fisheries and aquaculture: a report for seafish as part of the collective action to address greenhouse gas emissions in seafood. Sea Fish Industry Authority, Edinburgh, UK

    Google Scholar 

  • Parker RWR, Tyedmers PH (2012) Life cycle environmental impacts of three products derived from wild-caught Antarctic krill (Euphausia superba). Environ Sci Technol 46:4958–4965

    Article  CAS  Google Scholar 

  • Peeler EJ, Oidtmann BC, Midtlyng PJ, Miossec L, Gozlan RE (2011) Non-native aquatic animals introductions have driven disease emergence in Europe. Biol Invasions 13:1291–1303

    Article  Google Scholar 

  • Pelletier N, Tyedmers P (2007) Feeding farmed salmon: is organic better? Aquaculture 272:399–416

    Article  Google Scholar 

  • Pelletier N, Tyedmers P (2010) Life cycle assessment of frozen tilapia fillets from indonesian lake-based and pond-based intensive aquaculture systems. J Ind Ecol 14:467–481

    Article  CAS  Google Scholar 

  • Pelletier N, Tyedmers P, Sonesson U, Scholz A, Ziegler F, Flysjo A, Kruse S, Cancino B, Silverman H (2009) Not all salmon are created equal: life cycle assessment (LCA) of global salmon farming systems. Environ Sci Technol 43:8730–8736

    Article  CAS  Google Scholar 

  • Phong LT, de Boer IJM, Udo HMJ (2011) Life cycle assessment of food production in integrated agriculture-aquaculture systems of the Mekong Delta. Livest Sci 139:80–90

    Article  Google Scholar 

  • Roque d’Orbcastel E, Blancheton J-P, Aubin J (2009) Towards environmentally sustainable aquaculture: comparison between two trout farming systems using life cycle assessment. Aquac Eng 40:113–119

    Article  Google Scholar 

  • Sala S, Anton A, McLaren SJ et al (2017) In quest of reducing the environmental impacts of food production and consumption. J Clean Prod 140:387–398

    Article  Google Scholar 

  • Samuel-Fitwi B, Meyer S, Reckmann K, Schroeder JP, Schulz C (2013a) Aspiring for environmentally conscious aquafeed: comparative LCA of aquafeed manufacturing using different protein sources. J Clean Prod 52:225–233

    Article  Google Scholar 

  • Samuel-Fitwi B, Nagel F, Meyer S, Schroeder JP, Schulz C (2013b) Comparative life cycle assessment (LCA) of raising rainbow trout (Oncorhynchus mykiss) in different production systems. Aquac Eng 54:85–92

    Article  Google Scholar 

  • Samuel-Fitwi B, Schroeder JP, Schulz C (2013c) System delimitation in life cycle assessment (LCA) of aquaculture: striving for valid and comprehensive environmental assessment using rainbow trout farming as a case study. Int J Life Cycle Assess 18:577–589

    Article  CAS  Google Scholar 

  • Santos AAO, Aubin J, Corson MS et al (2015) Comparing environmental impacts of native and introduced freshwater prawn farming in Brazil and the influence of better effluent management using LCA. Aquaculture 444:151–159

    Article  Google Scholar 

  • Seghetta M, Romeo D, D’Este M et al (2017) Seaweed as innovative feedstock for energy and feed—evaluating the impacts through a life cycle assessment. J Clean Prod 150:1–15. https://doi.org/10.1016/j.jclepro.2017.02.022

    Article  CAS  Google Scholar 

  • Seves SM, Temme EHM, Brosens MCC, Zijp MC, Hoekstra J, Hollander A (2016) Sustainability aspects and nutritional composition of fish: evaluation of wild and cultivated fish species consumed in the Netherlands. Clim Chang 135:597–610

    Article  CAS  Google Scholar 

  • Smárason BÖ, Ögmundarson Ó, Árnason J et al (2017) Life cycle assessment of Icelandic Arctic char fed three different feed types. Turkish J Fish Aquat Sci 17:79–90

    Google Scholar 

  • Sonesson U, Davis J, Flysjö A, Gustavsson J, Witthöft C (2017) Protein quality as functional unit—a methodological framework for inclusion in life cycle assessment of food. J Clean Prod 140:470–478

    Article  Google Scholar 

  • Strazza C, Magrassi F, Gallo M, Del Borghi A (2015) Life cycle assessment from food to food: a case study of circular economy from cruise ships to aquaculture. Sustain Prod Consum 2:40–51

    Article  Google Scholar 

  • Taelman SE, De Meester S, Roef L et al (2013) The environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective. Bioresour Technol 150:513–522

    Article  CAS  Google Scholar 

  • UN (2017) World population prospects the 2017 revision key findings and advance tables. New York, USA

  • Weidema BP, Bauer C, Hischier R et al (2013) Data quality guideline for the Ecoinvent database version 3. The Ecoinvent Centre, St. Gallen, Switzerland

    Google Scholar 

  • WHO (2018) Antimicrobial resistance. http://www.who.int/antimicrobial-resistance/en/. Accessed 1 Mar 2018

  • Wilfart A, Prudhomme J, Blancheton JP, Aubin J (2013) LCA and emergy accounting of aquaculture systems: towards ecological intensification. J Environ Manag 121:96–109

    Article  Google Scholar 

  • Winther U, Ziegler F, Hognes ES et al (2009) Carbon footprint and energy use of Norwegian seafood products. SINTEF Fisheries and Aquaculture

  • Yacout DMM, Soliman NF, Yacout MM (2016) Comparative life cycle assessment (LCA) of Tilapia in two production systems: semi-intensive and intensive. Int J Life Cycle Assess 21:806–819

    Article  CAS  Google Scholar 

  • Youngson D, Saroglia J (2001) Genetic interactions between marine finfish species European aquaculture and wild conspecifics. J Appl Ichthyol 17:153–162

    Article  Google Scholar 

  • Ziegler F, Hornborg S, Green BG, Eigaard OR, Farmery AK, Hammar L, Hartmann K, Molander S, Parker RWR, Hognes ES, Vázquez-Rowe I, Smith ADM (2016) Expanding the concept of sustainable seafood using Life Cycle Assessment. Fish and Fisheries 17(4):1073–1093

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Alexia Bohnes.

Additional information

Responsible editor: Ian Vázquez-Rowe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohnes, F.A., Laurent, A. LCA of aquaculture systems: methodological issues and potential improvements. Int J Life Cycle Assess 24, 324–337 (2019). https://doi.org/10.1007/s11367-018-1517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-018-1517-x

Keywords

Navigation