Skip to main content

Advertisement

Log in

Life cycle assessment of passively aerated composting in gas-permeable bags of olive mill waste

  • LCA OF WASTE MANAGEMENT SYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

In Italy, composting olive mill waste has become a common practice, since it mitigates the environmental problems associated with spreading the waste on land. Compost can be used to prepare growth media for plant nursery cultivation as a substitute for peat, a non-renewable resource whose extraction has long raised environmental concerns. Here, we investigate two common composting procedures—open windrow and static-pile in gas-permeable bags—and compare them to evaluate their environmental impact.

Methods

We perform a cradle-to-grave life cycle assessment (LCA) in accordance with ISO 14040 and 14044. The LCA considers carbon storage in the soil after 100 years, fugitive greenhouse gas (GHG) emissions, and the impacts avoided by substituting for peat. We use cumulative energy demand, global warming potential (GWP), acidification potential, and eutrophication potential indicators in a contribution analysis and explore how the re-use of olive pits for energy production and reduction of commercial fertilizers improves the environmental balance. We also present a scenario analysis that indicates how parameter fluctuations affect the results.

Results and discussion

Our study shows that peat’s impacts can be significantly reduced from 1162.3 to 96.3 kg CO2-eq/Mg for open windrow compost or 43.1 kg CO2-eq/Mg for static-pile compost in gas-permeable bags. For static-pile composting, the lack of volatile organic compound and ammonia emissions and the detection of oxygen concentrations above 12% vol. suggest fully aerobic conditions. Fugitive greenhouse gas emissions were the most important contributions to the GWP. In the contribution analysis for static-pile composting, the avoidance of compost spreading and the carbon storage effect (due to compost usage) contributed 54% of the overall impacts to GWP and between 21 and 45% to the other indicators.

Conclusions

This LCA study illustrates how horticulturists can improve their resource management practices by recycling olive mill waste materials. Proper management of composting unit aeration can reduce fugitive GHG emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alburquerque J, Gonzálvez J, García D, Cegarra J (2004) Agrochemical characterisation of ‘alperujo’, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour Technol 91(2):195–200

    Article  CAS  Google Scholar 

  • Altieri R, Esposito A, Nair T (2011) Novel static composting method for bioremediation of olive mill waste. Int Biodeterior Biodegradation 65(6):786–789

    Article  CAS  Google Scholar 

  • Amlinger F, Peyr S, Cuhls C (2008) Green house gas emissions from composting and mechanical biological treatment. Waste Manag Res 26(1):47–60

    Article  CAS  Google Scholar 

  • Andersen JK, Boldrin A, Christensen TH, Scheutz C (2010a) Greenhouse gas emissions from home composting of organic household waste. Waste Manag 30(12):2475–2482

    Article  CAS  Google Scholar 

  • Andersen JK, Boldrin A, Christensen TH, Scheutz C (2010b) Mass balances and life-cycle inventory for a garden waste windrow composting plant (Aarhus, Denmark). Waste Manag Res 28(11):1010–1020

    Article  CAS  Google Scholar 

  • Arvanitoyannis IS, Kassaveti A (2007) Current and potential uses of composted olive oil waste. Int J Food Sci Tech 42(3):281–295

    Article  CAS  Google Scholar 

  • Aziz R, Chevakidagarn P, Danteravanich S (2016) Environmental impact evaluation of community composting by using life cycle assessment: a case study based on types of compost product operations. Walailak J Sci Techn 13(3):221–233

    Google Scholar 

  • Blonk H, Kool A, Luske B, Ponsioen T, Scholten J (2010) Methodology for assessing carbon footprints of horticultural products. A study of methodological issues and solutions for the development of the Dutch carbon footprint protocol for horticultural products. Blonk Milieu Advies BV, Gouda

  • Boldrin A, Andersen JK, Møller J, Christensen TH, Favoino E (2009) Composting and compost utilization: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):800–812

    Article  CAS  Google Scholar 

  • Boldrin A, Hartling KR, Laugen M, Christensen TH (2010) Environmental inventory modelling of the use of compost and peat in growth media preparation. Resour Conserv Recycl 54(12):1250–1260

    Article  Google Scholar 

  • Bong CPC, Lim LY, Ho WS, Lim JS, Klemeš JJ, Towprayoon S, Ho CS, Lee CT (2016) A review on the global warming potential of cleaner composting and mitigation strategies. J Clean Prod 146:149–157

    Article  Google Scholar 

  • Brandão M, Levasseur A (2011) Assessing temporary carbon storage in life cycle assessment and carbon footprinting: outcomes of an expert workshop. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Buratti C, Barbanera M, Testarmata F, Fantozzi F (2015) Life cycle assessment of organic waste management strategies. An Italian case study J Clean Prod 89:125–136

    Google Scholar 

  • Cadena E, Colón J, Sánchez A, Font X, Artola A (2009) A methodology to determine gaseous emissions in a composting plant. Waste Manag 29(11):2799–2807

    Article  CAS  Google Scholar 

  • Chilosi G, Esposito A, Castellani F, Stanzione V, Aleandri MP, Tomassini A, Dell’Unto D, Vannini A, Altieri R (2017) Characterization and use of olive mill waste compost as peat surrogate in substrate for cultivation of Photinia potted plants: assessment of growth performance and in vitro suppressiveness. Waste Biomass Valorization 9(6):919–928

    Article  CAS  Google Scholar 

  • Christensen TH, Gentil E, Boldrin A, Larsen AW, Weidema BP, Hauschild M (2009) C balance, carbon dioxide emissions and global warming potentials in LCA-modelling of waste management systems. Waste Manag Res 27(8):707–715

    Article  CAS  Google Scholar 

  • Clavreul J, Guyonnet D, Christensen TH (2012) Quantifying uncertainty in LCA-modelling of waste management systems. Waste Manag 32(12):2482–2495

    Article  Google Scholar 

  • Cleary J (2004) Greenhouse gas emissions from peat extraction in Canada. A life cycle perspective. MSc Thesis. Department of Geography, McGill University, Montréal

  • Cleary J, Roulet NT, Moore TR (2005) Greenhouse gas emissions from Canadian peat extraction, 1990-2000: a life-cycle analysis. AMBIO: J Hum Environ 34(6):456–461

    Article  Google Scholar 

  • Colón J, Martínez-Blanco J, Gabarrell X, Artola A, Sánchez A, Rieradevall J, Font X (2010) Environmental assessment of home composting. Resour Conserv Recycl 54(11):893–904

    Article  Google Scholar 

  • Couwenberg J (2011) Greenhouse gas emissions from managed peat soils: is the IPCC reporting guidance realistic. Mires and Peat 8(2):1–10

    Google Scholar 

  • Ecoinvent (2013) Ecoinvent database v3.01. Life cycle inventories of production systems. Swiss Centre for Life Cycle Inventories, Zurich

  • EPA (2011) Method for estimating greenhouse gas emission reductions from compost from commercial organic waste. California Air Resources Board (ARD), California Environmental Protection Agency (EPA), USA. Available at: \url{https://www.arb.ca.gov/cc/protocols/localgov/pubs/compost_method.pdf}

  • Favoino E, Hogg D (2008) The potential role of compost in reducing greenhouse gases. Waste Manag Res 26(1):61–69

    Article  CAS  Google Scholar 

  • Fernandes L, Sartaj M (1997) Comparative study of static pile composting using natural, forced and passive aeration methods. Compost Sci Util 5(4):65–77

    Article  Google Scholar 

  • Finnveden G (1999) Methodological aspects of life cycle assessment of integrated solid waste management systems. Resour Conserv Recycl 26(3):173–187

    Article  Google Scholar 

  • Flessa H, Ruser R, Dörsch P, Kamp T, Jimenez M, Munch J, Beese F (2002) Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agric Ecosyst Environ 91(1–3):175–189

    Article  CAS  Google Scholar 

  • Grönroos J, Seppälä J, Koskela S, Kilpeläinen A, Leskinen P, Holma A, Tuovinen J-P, Turunen J, Lind S, Maljanen M, Martikainen PJ (2013) Life-cycle climate impacts of peat fuel. Calculation methods and methodological challenges. Int J Life Cycle Assess 18(3):567–576

    Article  CAS  Google Scholar 

  • Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes H, de Bruijn H, van Duin R, Huijbregts M (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Eco-efficiency in industry and science, v. 7. Kluwer Academic Publishers, Dordrecht, The Netherlands

  • Hansen TL, Bhander GS, Christensen TH, Bruun S, Jensen LS (2006) Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE). Waste Manag Res 24(2):153–166

    Article  CAS  Google Scholar 

  • Haug RT (1993) The practical handbook of compost engineering. Lewis Publishers, Boca Raton

    Google Scholar 

  • Hauschild M, Wenzel H (1998) Environmental assessment of products, vol 2, Scientific background. Chapman & Hall, London

    Google Scholar 

  • He Y (2000) Measurements of N2O and CH4 from the aerated composting of food waste. Sci Total Environ 254(1):65–74

    Article  CAS  Google Scholar 

  • Helin T, Holma A, Soimakallio S (2014) Is land use impact assessment in LCA applicable for forest biomass value chains? Findings from comparison of use of Scandinavian wood, agro-biomass and peat for energy. Int J Life Cycle Assess 19(4):770–785

    Article  Google Scholar 

  • IPCC (2007) Intergovernmental panel on climate change. Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Edited by Pachauri, R. K. and Reisinger, A. Cambridge, UK, and New York, NY: Cambridge University Press

  • IPCC (2013) Intergovernmental Panel on Climate Change. 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. Geneva

  • ISO 14040 (2006) Environmental management -- life cycle assessment -- principles and framework

  • ISO 14044 (2006) Environmental management -- life cycle assessment -- requirements and guidelines

  • ISTAT (2015) Istituto Nazionale di Statistica. Rapporto Annuale 2015. La situazione del Paese

  • Italian Law n. 574 (1996) Nuove norme in materia di utilizzazione agronomica delle acque di vegetazione e di scarichi dei frantoi oleari (New rules on agronomic utilization of olive mill wastewater and olive mill discharge). In: Gazzetta Ufficiale n. 265, 12 November 1996, Roma

  • Klöpffer W (1997) In defense of the cumulative energy demand. Int J Life Cycle Assess 2(2):61

    Article  Google Scholar 

  • Leton TG, Stentiford EI (1990) Control of aeration in static pile composting. Waste Manag Res 8(1):299–306

    Article  CAS  Google Scholar 

  • Martínez-Blanco J, Colón J, Gabarrell X, Font X, Sánchez A, Artola A, Rieradevall J (2010) The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Manag 30(6):983–994

    Article  CAS  Google Scholar 

  • Miller JH, Jones N (1995) Organic and compost-based growing media for tree seedling nurseries. Forestry series. World Bank technical paper (no. PB--96-117189/XAB; WORLD BANK TP--264). International Bank for Reconstruction and Development, Washington, DC (United States)

  • Murayama S, Asakawa Y, Ohno Y (1990) Chemical properties of subsurface peats and their decomposition kinetics under field conditions. Soil Science and Plant Nutrition 36(1):129–140

  • Nasini L, de Luca G, Ricci A, Ortolani F, Caselli A, Massaccesi L, Regni L, Gigliotti G, Proietti P (2016) Gas emissions during olive mill waste composting under static pile conditions. Int Biodeterior Biodegradation 107:70–76

    Article  CAS  Google Scholar 

  • Niaounakis M, Halvadakis CP (2006) Olive processing waste management. Literature review and patent survey, 2nd edition. Waste Management Series, volume 5, Elsevier, Amsterdam

  • Pagga U, Beimborn DB, Boelens J, de Wilde B (1995) Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test. Chemosphere 31(11):4475–4487

    Article  CAS  Google Scholar 

  • Recchia L, Boncinelli P, Cini E, Vieri M, Pegna FG, Sarri D (2011) Multicriteria analysis and LCA techniques: with applications to agro-engineering problems. Green energy and technology, Springer, London

    Book  Google Scholar 

  • Regina K, Budiman A, Greve MH, Grønlund A, Kasimir Å, Lehtonen H, Petersen SO, Smith P, Wösten H (2016) GHG mitigation of agricultural peatlands requires coherent policies. Clim Policy 16(4):522–541

    Article  Google Scholar 

  • Saer A, Lansing S, Davitt NH, Graves RE (2013) Life cycle assessment of a food waste composting system. Environmental impact hotspots J Clean Prod 52:234–244

    Article  CAS  Google Scholar 

  • Sierra J, Martì E, Montserrat G, Cruañas R, Garau M (2001) Characterisation and evolution of a soil affected by olive oil mill wastewater disposal. Sci Total Environ 279(1):207–214

    Article  CAS  Google Scholar 

  • Smith A, Brown K, Ogilvie S, Rushton K, Bates J (2001) Waste management options and climate change. Final report to the European Commission, DG Environment. AEA Technology. Office for Official Publications of the European Communities, Luxembourg

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, USA

  • Torrellas M, Antón A, Ruijs M, García Victoria N, Stanghellini C, Montero JI (2012) Environmental and economic assessment of protected crops in four European scenarios. J Clean Prod 28:45–55

    Article  Google Scholar 

  • van Haaren R, Themelis NJ, Barlaz M (2010) LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC). Waste Manag 30(12):2649–2656

    Article  Google Scholar 

  • Veeken A, de Wilde V, Hamelers B (2002) Passively aerated composting of straw-rich pig manure: effect of compost bed porosity. Compost Sci Util 10(2):114–128

    Article  Google Scholar 

  • Viel M, Sayag D, Peyre A, André L (1987) Optimization of in-vessel co-composting through heat recovery. Biological Wastes 20(3):167–185

    Article  CAS  Google Scholar 

  • Waddington JM, Plach J, Cagampan JP, Lucchese M, Strack M (2009) Reducing the carbon footprint of Canadian peat extraction and restoration. AMBIO: A Journal of the Human Environment 38(4):194–200

    Article  CAS  Google Scholar 

  • Zeman C, Depken D, Rich M (2002) Research on how the composting process impacts greenhouse gas emissions and global warming. Compost Sci Util 10(1):72–86

    Article  Google Scholar 

Download references

Acknowledgements

We are especially grateful to Vitale Stanzione of ISAFOM-CNR, Perugia, Italy, for collaborating in data collection and to PAM srl, Pistoia, Italy, for the collaboration in technical operations.

Funding

This research was carried on within the framework of “SANS-OIL” project, funded by Regione Toscana, Italy (PSR 20072013), and it was partially supported by the DFG RTG 1703 “Resource Efficiency in Interorganizational Networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Castellani.

Additional information

Responsible editor: Shabbir Gheewala

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellani, F., Esposito, A., Geldermann, J. et al. Life cycle assessment of passively aerated composting in gas-permeable bags of olive mill waste. Int J Life Cycle Assess 24, 281–296 (2019). https://doi.org/10.1007/s11367-018-1514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-018-1514-0

Keywords

Navigation