Skip to main content

Advertisement

Log in

Carbon footprints of grain-, forage-, and energy-based cropping systems in the North China plain

  • CARBON FOOTPRINTING
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Low carbon footprint agriculture has received increasing attention in the effect of reducing greenhouse gas emissions and mitigating climate change. However, little is known about how crop diversification may affect the system productivity and the carbon footprint.

Methods

In this study, we analyzed the carbon footprints of four cropping systems: winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) (WM, grain crop pattern, 1-year cycle); ryegrass (Lolium perenne L.)–sweet sorghum (Sorghum bicolor (L.) Moench) (RS, forage crop pattern, 1-year cycle); ryegrass–sweet sorghum → winter wheat–summer maize (RSWM, grain plus forage crop pattern, 2-year cycle); and switchgrass (Panicum virgatum L.) perennial cropping (SG, energy crop pattern) that have been evaluated in a long-term (2009–2015) field experiment in the North China Plain (NCP). Carbon footprints were expressed using three metrics: CFa (per unit area), CFb (per kg of biomass), and CFe (per unit of economic output).

Results and discussion

The results showed that switchgrass as a perennial herbaceous crop with one cut per year had the lowest annual carbon footprint at three metrics. The WM cropping system had the highest annual CFa, CFb, and CFe values which were 1.73, 2.23, and 1.78 times higher, respectively, than those of the RSWM cropping system. The RS cropping system had the lower annual CFa, CFb, and CFe values, which accounted for 20.9, 3.4, and 2.9%, respectively, of the WM cropping system. The four cropping systems had annual carbon footprints at per unit area, per kilogram of biomass and per unit of economic output ranked from lowest to highest of SG < RS < RSWM < WM.

Conclusions

We conclude that appropriately designed, diversified cropping systems that include grain, forage, and bioenergy crops can effectively reduce the carbon footprint while maintaining or even increasing the systems productivity in the North China Plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CF:

carbon footprint

CFa :

carbon footprint per unit area

CFb :

carbon footprint per kg of biomass

CFe :

carbon footprint per unit of economic output

CO2 eq:

carbon dioxide equivalents

GHGs:

greenhouse gas emissions

NCP:

North China Plain

RS:

ryegrass-sweet sorghum

RSWM:

ryegrass–sweet sorghum → winter wheat–summer maize

SG:

switchgrass perennial cropping

SOC:

Soil organic carbon

WM:

winter wheat–summer maize

References

  • Bai Y, Luo L, Van der Voet E (2010) Life cycle assessment of switchgrass derived ethanol as transport fuel. Int J Life Cycle Assess 15:468–477

    Article  CAS  Google Scholar 

  • Brandão M, Levasseur A, Kirschbaum MUF, Bo PW, Cowie AL (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Assess 18:230–240

    Article  CAS  Google Scholar 

  • BSI (2008) PAS 2050:2008 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services (British Standards Institution, London)

  • BSI (2011) PAS 2050:2011 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services (British Standards Institution, London)

  • Cadoux S, Ferchaud F, Demay C, Boizard H, Machet JM, Fourdinier E, Preudhomme M, Chabbert B, Gosse G, Mary B (2014) Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. GCB Bioenergy 6(4):425–438

    Article  CAS  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci U S A 104(46):18123–18128

    Article  CAS  Google Scholar 

  • Chai Q, Qin AZ, Gan YT, Yu AZ (2013) Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron Sustain Dev 34(2):535–543

    Article  CAS  Google Scholar 

  • Cheng K, Pan GX, Smith P, Luo T, Li LQ, Zhang JW, Zhang XH, Han XJ, Yan M (2011) Carbon footprint of China’s crop production-an estimation using agro-statistics data over 1993-2007. Agric Ecosyst Environ 142(3–4):231–237

    Article  Google Scholar 

  • Cougnon M, Baert J, Van Waes C, Reheul D (2013) Performance and quality of tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.) and mixtures of both species grown with or without white clover (Trifolium repens L.) under cutting management. Grass Forage Sci 69(4):666–677

    Article  Google Scholar 

  • Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4(4):372–391

    Article  CAS  Google Scholar 

  • Dyer JA, Vergé X, Desjardins RL, Worth DE, Mcconkey BG (2010) The impact of increased biodiesel production on the greenhouse gas emissions from field crops in Canada. Energy Sustain Dev 14(2):73–82

    Article  CAS  Google Scholar 

  • Ellert BH, Janzen HH (2008) Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer. Can J Soil Sci 88(2):207–217

    Article  CAS  Google Scholar 

  • Fan XF, Hou XC, Zuo HT, Wu JY, Duan LS (2010) Biomass yield and quality of three kinds of bioenergy grasses in Beijing of China. Scientia Agricultural Sinica 43(16):3316–3322 (in Chinese with English abstract)

    Google Scholar 

  • Ferchaud F, Vitte G, Mary B (2016) Changes in soil carbon stocks under perennial and annual bioenergy crops. GCB Bioenergy 8(2):290–306

    Article  CAS  Google Scholar 

  • Follett RF, Vogel KP, Varvel GE, Mitchell RB, Kimble J (2012) Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy. Bioenerg Res 5(4):866–875

    Article  CAS  Google Scholar 

  • Fu HM, Meng FY, Molatudi RL, Zhang BG (2016) Sorghum and switchgrass as biofuel feedstocks on marginal lands in northern China. Bioenerg Res 9:633–642

    Article  CAS  Google Scholar 

  • Gan YT Hamel C, O Donovan JT, Cutforth H, Zentner RP, Campbell CA, Niu YN, Poppy L (2015) Diversifying crop rotations with pulses enhances system productivity. Sci Rep 5. https://doi.org/10.1038/srep14625

  • Gan YT, Liang C, Wang XY, Mcconkey B (2011) Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crop Res 122(3):199–206

    Article  Google Scholar 

  • Gan YT, Liang C, Huang GB, Malhi SS, Brandt SA, Katepa-Mupondwa F (2012) Carbon footprint of canola and mustard is a function of the rate of N fertilizer. Int J Life Cycle Assess 17(1):58–68

    Article  CAS  Google Scholar 

  • Gan YT, Liang C, Chai Q, Lemke RL, Campbell CA, Zentner RP (2014) Improving farming practices reduces the carbon footprint of spring wheat production. Nat Commun 5:5012. https://doi.org/10.1038/ncomms6012

    Article  Google Scholar 

  • Han KJ, Pitman WD, Kim M, Day DF, Alison MW, McCormick ME, Aita G (2013) Ethanol production potential of sweet sorghum assessed using forage fiber analysis procedures. GCB Bioenergy 5(4):358–366

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Lachouani P, Knudsen MT, Ambus P, Boelt B, Gislum R (2016) Productivity and carbon footprint of perennial grass–forage legume intercropping strategies with high or low nitrogen fertilizer input. Sci Total Environ 541:1339–1347

    Article  CAS  Google Scholar 

  • Hu CS, Dong WX, Zhang YM, Cheng YS, Li XX, Yang LL (2011) Nitrogen flux and its manipulation in the cropland ecosystem of the North China plain. Chinese J Eco-Agr 19:997–1003

    Article  CAS  Google Scholar 

  • Huang JX, Chen YQ, Sui P, Ga WS (2013) Estimation of net greenhouse gas balance using crop- and soil- based approaches: two case studies. Sci Total Environ 456-457(7):299–306

    Article  CAS  Google Scholar 

  • IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and other Land Use, vol. 4. Paris, France

  • IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, p 104. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_full_report.pdf. Accessed 1 May 2017

  • ISO 13065:2015 (2015) Sustainability criteria for bioenergy. International Organisation for Standardisation (Geneve)

  • Knudsen MT, Meyer-Aurich A, Olesen JE, Chirinda N, Hermansen JE (2014) Carbon footprints of crops from organic and conventional arable crop rotations—using a life cycle assessment approach. J Clean Prod 64:609–618

    Article  CAS  Google Scholar 

  • Krupinsky JM, Bailey KL, McMullen MP, Gossen BD, Turkington TK (2002) Managing plant diseases risk in diversified cropping systems. Agron J 94(2):198–209

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  CAS  Google Scholar 

  • Li CX, Feng HS (2013) A study on the adaptability of sweet sorghum planted in different altitudinal areas of the Qinghai plateau. Acta Prataculturae Sinica 22(3):51–59 (In Chinese with English abstract)

    Google Scholar 

  • Li WX, Li L, Sun JH, Guo TW, Zhang FS, Bao XG, Peng A, Tang C (2005) Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China. Agric Ecosyst Environ 105(3):483–491

    Article  CAS  Google Scholar 

  • Liang L (2009) Environmental impact assessment of circular agriculture based on life cycle assessment: methods and case studies. (PhD thesis), Beijing, China: China Agricultural University, College of Agronomy and Biotechnology

  • Linton JA, Miller JC, Little RD, Petrolia DR, Coble KH (2011) Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States. Biomass Bioenergy 35(7):3050–3057

    Article  Google Scholar 

  • Liu SX, Mo XG, Lin ZH, Xu YQ, Ji JJ, Wen G, Richey J (2010) Crop yield responses to climate change in the Huang-Huai-Hai plain of China. Agr Water Manage 97(8):1195–1209

    Article  Google Scholar 

  • Liu HH, Ren LT, Spiertz H, Zhu YB, Xie GH (2015) An economic analysis of sweet sorghum cultivation for ethanol production in North China. GCB Bioenergy 7(5):1176–1184

    Article  Google Scholar 

  • Ma Z, Wood CW, Bransby DI (2000) Soil management impacts on soil carbon sequestration by switchgrass. Biomass Bioenergy 18(6):469–477

    Article  Google Scholar 

  • Ma BL, Liang BC, Biswas DK, Morrison MJ, McLaughlin NB (2012) The carbon footprint of maize production as affected by nitrogen fertilizer and maize-legume rotations. Nutr Cycl Agroecosys 94(1):15–31

    Article  CAS  Google Scholar 

  • Mclaughlin SB, Walsh ME (1998) Evaluation environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14(4):317–324

    Article  CAS  Google Scholar 

  • Miller PR, Gan YT, McConkey BG, McDonald CL (2003) Pulse crops in the northern Great Plains. I Grain productivity and residual effects on soil water and nitrogen Agron J 95(4):972–979

    Google Scholar 

  • Mitchell R, Vogel P, Sarath G (2008) Managing and enhancing switchgrass as a bioenergy feedstock. Biofuels Bioprod Biorefin 2(6):530–539

    Article  Google Scholar 

  • Monti A, Fazio S, Lychnaras V, Soldatos P, Venturi G (2007) A full economic analysis of switchgrass under different scenarios in Italy estimated by BEE model. Biomass Bioenergy 31(4):177–185

    Article  Google Scholar 

  • Nelson RG, Ascough JC, Langemeier MR (2006) Environmental and economic analysis of switchgrass production for water quality improvement in Northeast Kansas. J Environ Manag 79(4):336–347

    Article  CAS  Google Scholar 

  • Ostle NJ, Levy PE, Evans CD, Smith P, Beddington J (2009) UK land use and soil carbon sequestration. Land Use Policy 26:S274–S283

    Article  Google Scholar 

  • Perlack RD et al (2011) US billion-ton update: biomass supply for a bioenergy and bioproducts industry. http://works.bepress.com/douglas_karlen/47/

  • Qin SP, Wang YY, Hu CS, Oenema O, Li XX, Zhang YM, Dong WX (2012) Yield-scaled N2O emissions in a winter wheat-summer corn double-cropping system. Atmos Environ 55(3):240–244

    Article  CAS  Google Scholar 

  • Qu H, Liu XB, Dong CF, Lu XY, Shen YX (2014) Field performance and nutritive value of sweet sorghum in eastern China. Field Crop Res 157(2):84–88

    Article  Google Scholar 

  • Rees WE (1992) Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ Urbanisation 4(2):121–130

    Article  Google Scholar 

  • SAS I.I (2011) SAS/STAT User’s Guide, Version 9.3. SAS Institute, Cary, NC, USA

  • Seda, M., Assumpeió, A., Muñoz, P., (2010) Analysing the influence of functional unit in agricultural LCA. LCA FOOD 2010. VII international conference on life cycle assessment in the agri-food sector. In: Notarnicola B, Settanni E, Tassielli G, Giungato P (eds) Proceedings of LCA Food 2010. Bari 22–24 September 2010

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1(11):17–26

    Article  CAS  Google Scholar 

  • Tanaka DL, Krupinsky JM, Merrill SD, Liebig MA, Hanson JD (2007) Dynamic cropping systems for sustainable crop production in the northern Great Plains. Agron J 99(4):904–911

    Article  Google Scholar 

  • Tian SZ, Ning TY, Zhao HX, Wang BW, Li N, Han HF, Li ZJ, Chi SY (2012) Response of CH4 and N2O emissions and wheat yields to tillage method changes in the North China plain. PLoS One 7(12):1–10

    Google Scholar 

  • Vasilakoglou I, Dhima K, Karagiannidis N, Gatsis T (2011) Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crops Res 120(1):38–46

    Article  Google Scholar 

  • Wackernagel M (1994) Ecological footprint and appropriated carrying capacity: a tool for planning toward sustainability. (PhD thesis), the University of British Columbia, School of Community and Regional Planning, Vancouver

  • Walkley A, Black LA (1934) An examination of the Dgtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang ZB, Zhang HL, Lu XH, Wang M, Chu QQ, Wen XY, Chen F (2016) Lowering carbon footprint of winter wheat by improving management practices in North China plain. J Clean Prod 112:149–157

    Article  CAS  Google Scholar 

  • Wiedmann T, Minx J (2008) A definition of “carbon footprint”. In: Pertsova CC (ed) Ecological economics research trends: chapter 1, NY, USA, pp 1–11

  • Wright L, Turhollow A (2010) Switchgrass selection as a “model” bioenergy crop: a history of the process. Biomass Bioenergy 34(6):851–868

    Article  Google Scholar 

  • Wu CW, Chen XB, Wei CB, Xu HL, Zhang LB, Liu SJ, Zhang PN, Bi YB (2014) Marginal land resources development and biomass energy research in Yellow River Delta. J Agr Sci Technol 16(4):109–119 (in Chinese with English abstract)

    Google Scholar 

  • Yang XL, Sui P, Zhang M, Chen YQ, Gao WS (2014) Reducing agricultural carbon footprint through diversified crop rotation systems in the North China plain. J Clean Prod 76(4):131–139

    Article  Google Scholar 

  • Zentner RP, Lafond GP, Derksen DA, Nagy CN, Wall DD, May WE (2004) Effects of tillage method and crop rotations on non-renewable energy use efficiency for a thin black Chernozem in the Canadian prairies. Soil Till Res 77(2):125–136

    Article  Google Scholar 

  • Zhang YM, Chen DL, Zhang JB, Edis R, Hu CS, Zhu AN (2004) Ammonia volatilization and denitrification losses from an irrigated maize-wheat rotation field in the North China plain. Pedosphere 14(4):533–540

    CAS  Google Scholar 

  • Zhang Q, Ju XT, Zhang FS (2010) Re-estimation of direct nitrous oxide emission from agricultural soils of China via revised IPCC2006 guideline method. Chinese J Eco-Agr 18(1):7–13 (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Zhang MY, Wang FJ, Chen F, Malemela MP, Zhang HL (2013) Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China plain. J Clean Prod 54(54):101–107

    Article  CAS  Google Scholar 

  • Zhao XN, Hu KL, Li KJ, Wang P, Ma YL, Stahr K (2013a) Effect of optimal irrigation, different fertilization, and reduced tillage on soil organic carbon storage and crop yields in the North China plain. J Plant Nutr Soil Sci 176(1):89–98

    Article  CAS  Google Scholar 

  • Zhao B, Dong ST, Zhang JW, Liu P (2013b) Effects of controlled-release fertilizer on nitrogen use efficiency in summer maize. PLoS One 8(8):1–8

    Google Scholar 

  • Zhao CQ, Fan XF, Hou XC, Zhu Y, Yue YS, Hu YG, Wu JY (2016) Research on the differences in biomass and its allocation of 14 switchgrass in Beijing. Journal of Plant Genetic Resources 17(2):280–287 (in Chinese with English abstract)

    Google Scholar 

  • Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, Xu H, Chen GX, Cai ZC, Yue J, Gu J, Su F, Zou JW, Zhu JG (2008) Quantification of N2O fluxes from soil-plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 311(1):211–234

    Article  CAS  Google Scholar 

  • Zhuang DF, Jiang D, Liu L, Huang YH (2011) Assessment of bioenergy potential on marginal land in China. Renew Sust Energ Rev 15(2):1050–1056

    Article  Google Scholar 

Download references

Funding

This work was jointly financed by the National Natural Science Foundation of China (No. 31601267) and National Key Project of Scientific and Technical Supporting Programs (No. 2016YFD0300203; No. 2016YFD0300105) and the Chinese Universities Scientific Fund (2017NX003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanquan Chen or Peng Sui.

Additional information

Responsible editor: Zuoren Nie

Electronic supplementary material

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Sun, B., Gao, W. et al. Carbon footprints of grain-, forage-, and energy-based cropping systems in the North China plain. Int J Life Cycle Assess 24, 371–385 (2019). https://doi.org/10.1007/s11367-018-1481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-018-1481-5

Keywords

Navigation