Skip to main content

Evaluating the carbon footprint of Chilean organic blueberry production

Abstract

Purpose

Chile is the second largest blueberry producer and exporter worldwide. At the global level, there is a lack of information by means of field data about greenhouse gas emissions from organic cultivation of this fruit. This study obtains a resource use inventory and assesses the cradle-to-farm gate carbon footprint (CF) of organic blueberry (Vaccinium corymbosum) production in the main cultivation area of Chile in order to identify CF key factors and to provide improvement measures.

Methods

The method used in this study follows the ISO 14040 framework and the main recommendations in the PAS 2050 guide as well as its specification for horticultural products PAS 2050-1. Primary data were collected for three consecutive production seasons from five organic Chilean blueberry orchards and calculations conducted with the GaBi 4 software. Agricultural factors such as fertilizers, pesticides, fossil fuels, electricity, materials, machinery, and direct land use change (LUC) are included. Only three orchards present direct LUC.

Results and discussion

The direct LUC associated with the conversion from annual crops to perennial crops is a key factor in the greenhouse gas removals from the orchards. When accounting for direct LUC, the CF of organic blueberry production in the studied orchards ranges from removals (reported as negative value) of −0.94 to emissions of 0.61 kg CO2-e/kg blueberry. CF excluding LUC ranges from 0.27 to 0.69 kg CO2-e/kg blueberry. The variability in the results of the orchards suggests that the production practices have important effects on the CF. The factors with the greatest contribution to the greenhouse emissions are organic fertilizers followed by energy use causing, on average, 50 and 43 % of total emissions, respectively.

Conclusions

The CF of the organic blueberry orchards under study decreases significantly when taking into account removals related to LUC. The results highlight the importance of reporting separately the greenhouse gas (GHG) emissions from LUC. The CF of blueberry production could be reduced by optimizing fertilizer application, using cover crops and replacing inefficient tractors and large irrigation pumps. The identification of improvement measures would be a useful guide for changing grower practices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Because this study does a cradle-to-farm gate assessment of a horticultural product, PAS 2050-1 was chosen instead of the ISO/TS 14067:2013. PAS 2050-1 provides specific guidance and indicates supplementary requirements for use in conjunction with PAS 2050 for the cradle-to-gate assessment of the GHG emissions from the cultivation of horticultural products.

References

  1. Achten W, Almeida J, Fobelets V, Bolle E, Mathijs E, Singh V, Tewari D, Verchot L, Muys B (2010) Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India. Appl Energy 87:3652–3660

    Article  CAS  Google Scholar 

  2. Beccali M, Cellura M, Iudicello M, Mistretta M (2009) Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of Italian citrus-based products. Environ Manage 43:707–724

    Article  Google Scholar 

  3. Bessou C, Basset-Mens C, Tran T, Benoist A (2013) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18:340–361

    Article  Google Scholar 

  4. Bilalis D, Kamariari P, Karkanis A, Efthimiadou A, Zorpas A, Kakabouki I (2013) Energy inputs, output and productivity in organic and conventional maize and tomato production, under Mediterranean conditions. Not Bot Horti Agrobot Cluj-Napoca 41:190–194

    Google Scholar 

  5. Bina S, Dowlatabadib H (2005) Consumer lifestyle approach to US energy use and the related CO2 emissions. Energ Policy 33:197–208

    Article  Google Scholar 

  6. Blonk Consultants (2014) The direct land use change assessment tool. Gouda, The Netherlands, Available at: http://blonkconsultants.nl/en/tools/land-use-change-tool.html

    Google Scholar 

  7. Brazelton C (2013) World blueberry acreage & production. North American Blueberry Council Available at: http://www.blueberrieschile.cl/paper/paper62.pdf

  8. Brito de Figueirêdo MC, Kroeze C, Potting J et al (2012) The carbon footprint of exported Brazilian yellow melón. J Clean Prod 47:404–414

    Article  Google Scholar 

  9. BSI (2011) PAS 2050:2011. Specification for the assessment of life cycle greenhouse gas emissions of goods and services. British Standards Institution, London

    Google Scholar 

  10. BSI (2012) PAS 2050-1:2012. Assessment of life cycle greenhouse gas emissions from horticultural products. British Standards Institution, London

    Google Scholar 

  11. Cerutti A, Bagliani M, Beccaro G, Bounous G (2010) Application of ecological footprint analysis on nectarine production: methodological issues and results from a case study in Italy. J Clean Prod 18:771–776

    Article  Google Scholar 

  12. Cerutti A, Bruun S, Beccaro G, Bounous G (2011) A review of studies applying environmental impact assessment methods on fruit production systems. J Environ Manage 92:2277–2286

    Article  Google Scholar 

  13. Choo YM, Muhamad H, Hashim Z, Subramaniam V, Puah CW et al (2011) Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. Int J Life Cycle Assess 16:669–681

    Article  CAS  Google Scholar 

  14. Dalgaard T, Halberg N, Porter JR (2001) A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agric Ecosyst Environ 87:51–65

    Article  Google Scholar 

  15. Comité de Arándanos (2013) Regiones productoras. Santiago, Chile. Available at: http://www.comitedearandanos.cl

  16. Ecoinvent Centre (2014) The ecoinvent database. Swiss Centre for Life Cycle Inventories. Available at http://www.ecoinvent.org/database/database.html

  17. EPLCA (2007) Carbon footprint - what it is and how to measure it. EPLCA (European Platform on Life Cycle Assessment), Joint Research Centre-Institute for Environment and Sustainability. Ispra, Italy

  18. FAO (2014a) Agriculture, forestry and other land use emissions by sources and removals by sinks. 1990–2011 analysis. In: Tubiello FN, Salvatore M, Cóndor Golec RD et al. (eds) Working Paper Series FAO. Rome, Italy

  19. FAO (2014b) FAOSTAT Database v. 2014. FAO Statistics Division. Available at http://faostat3.fao.org/home/E

  20. Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14:91–94

    Article  Google Scholar 

  21. Franchetti M, Apul D (2012) Carbon footprint analysis: concepts, methods, implementation, and case studies. CRC Press, Florida

    Book  Google Scholar 

  22. Fresh Fruit Portal (2014) International Special Edition. Blueberries 2014. Gutierres, ed, Santiago, Chile

  23. Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M, Wernet G (2007) Overview and methodology. Ecoinvent report No. 1. Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  24. Gan Y, Liang C, Hamel C, Cutforth H, Wang H (2011) Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agron Sustainable Dev 31:643–656

    Article  Google Scholar 

  25. Garnett T (2006) Fruit and vegetables and greenhouse gas emissions: exploring the relationship. Working paper produced as part of the work of the Food Climate Research Network. Centre for Environmental Strategy, University of Surrey

  26. GHG Protocol (2011) Quantitative inventory uncertainty. In: World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD) (eds) Product life cycle accounting and reporting standard. Greenhouse Gas Protocol. Available at http://www.ghgprotocol.org/standards/product-standard

  27. Girgenti V, Peano C, Bounous M, Baudino C (2013) A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy. Sci Total Environ 458–460:414–418

    Article  Google Scholar 

  28. Goodland R (1997) Environmental sustainability in agriculture: diet matters. Ecol Econ 23:189–200

    Article  Google Scholar 

  29. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R et al (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: scientific background. Kluwer Academic Publishers, Dordrecht, p 692

    Google Scholar 

  30. Guzmán GI, Alonso AM (2008) A comparison of energy use in conventional and organic olive oil production in Spain. Agric Syst 98:167–176

    Article  Google Scholar 

  31. Heller M, Keoleian G (2015) Greenhouse gas emission estimates of U.S. dietary choices and food loss. J Ind Ecol 19:391–401

    Article  CAS  Google Scholar 

  32. Huerta JH, Muñoz E, Montalba R (2012) Evaluation of two production methods of Chilean wheat by life cycle assessment (LCA). Idesia 30:101–110

    Article  Google Scholar 

  33. Ingwersen W (2012) Life cycle assessment of fresh pineapple from Costa Rica. J Clean Prod 35:152–153

    Article  Google Scholar 

  34. INIA (2010) Huella de Carbono en productos de exportación agropecuarios de Chile. Instituto de Investigaciones Agropecuarias (INIA), Servicios de Ingeniería DEUMAN Ltda, Santiago, Chile

    Google Scholar 

  35. IPCC (2006a) N2O emissions from managed soils and CO2 emissions from lime and urea application. Chapter 11. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Intergovernmental Panel on Climate Change guidelines for national greenhouse gas inventories. National Greenhouse Gas Inventories Programme, IGES Hayama, Japan

    Google Scholar 

  36. IPCC (2006b) Agriculture, forestry and other land use. Introduction. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Intergovernmental Panel on Climate Change guidelines for national greenhouse gas inventories. National Greenhouse Gas Inventories Programme, IGES Hayama, Japan

    Google Scholar 

  37. Iriarte A, Rieradevall J, Gabarrell X (2010) Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J Clean Prod 18:336–345

    Article  CAS  Google Scholar 

  38. Iriarte A, Rieradevall J, Gabarrell X (2011) Environmental impacts and energy demand of rapeseed as an energy crop in Chile under different fertilization and tillage practices. Biomass Bioenergy 35:4305–4315

    Article  CAS  Google Scholar 

  39. Iriarte A, Almeida MG, Villalobos P (2014) Carbon footprint of premium quality export bananas: case study in Ecuador, the world’s largest exporter. Sci Total Environ 472:1082–1088

    Article  CAS  Google Scholar 

  40. ISO (2006) ISO 14040:2006. Environmental management—life cycle assessment—principles and framework. International Organization for Standardization, Geneva

    Google Scholar 

  41. Kaltsas AM, Mamolos AP, Tsatsarelis CA, Nanos GD, Kalburtji KL (2007) Energy budget in organic and conventional olive groves. Agric Ecosyst Environ 122:243–251

    Article  Google Scholar 

  42. Kavargiris SE, Mamolos AP, Tsatsarelis CA, Nikolaidou AE, Kalburtji KL (2009) Energy resources’ utilization in organic and conventional vineyards: energy flow, greenhouse gas emissions and biofuel production. Biomass Bioenergy 33:1239–1250

    Article  CAS  Google Scholar 

  43. Kramer K, Moll H, Nonhebel S, Wilting H (1999) Greenhouse gas emissions related to Dutch food consumption. Energy Policy 27:203–216

    Article  Google Scholar 

  44. Kroodsma DA, Field CB (2006) Carbon sequestration in California agriculture, 1980–2000. Ecol Appl 16:1975–1985

    Article  Google Scholar 

  45. Lal R (2009) Challenges and opportunities in soil organic matter research. Eur J Soil Sci 60:158–169

    Article  CAS  Google Scholar 

  46. Laurent A, Olsen S, Hauschild M (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46:4100–4108

    Article  CAS  Google Scholar 

  47. Liu Y, Langer V, Høgh-Jensen H, Egelyng H (2010) Life cycle assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. J Clean Prod 18:1423–1430

    Article  CAS  Google Scholar 

  48. Luo L, Van Der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renewable Sustainable Energy Rev 13:1613–1619

    Article  CAS  Google Scholar 

  49. Meier M, Stoessel F, Jungbluth N, Juraske R, Schader C, Stolze M (2014) Environmental impacts of organic and conventional agricultural products—are the differences captured by life cycle assessment? J Environ Manage 149:193–208

    Article  Google Scholar 

  50. Milà i Canals L, Burnip GM, Cowell SJ (2006) Evaluation of the environmental impacts of apple production using Life Cycle Assessment (LCA): case study in New Zealand. Agric Ecosyst Environ 114:226–238

    Article  Google Scholar 

  51. Mithraratne N, McLaren S, Barber A (2008) Carbon footprinting for the kiwifruit supply chain. Report on methodology and scoping study. Landcare Research. Ministry of Agriculture and Forestry, New Zealand

    Google Scholar 

  52. Mudahar M, Hignett T (1987) Energy requirements, technology, and resources in the fertilizer sector. In: Helsel ZR (ed) Energy in world agriculture. Elsevier, Amsterdam, pp 26–61

    Google Scholar 

  53. Öborn I, Sonesson U, Stern S, Berg C, Gunnarsson S, Lagerkvist C (2002) Where are the weak links in a sustainable food chain? An interview survey. MAT21 Rapport. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  54. ODEPA (2013a) Inserción de la agricultura chilena en los mercados internacionales. ODEPA (Oficina de Estudios y Políticas Agrarias), Gobierno de Chile, Santiago, Chile

    Google Scholar 

  55. ODEPA (2013b) Alternativas para el cultivo de arándanos. ODEPA (Oficina de Estudios y Políticas Agrarias), Gobierno de Chile, Santiago, Chile

    Google Scholar 

  56. ODEPA (2013c) Evolución de las exportaciones silvoagropecuarias de Chile, 2003 - junio 2013. ODEPA (Oficina de Estudios y Políticas Agrarias), Gobierno de Chile, Santiago, Chile

    Google Scholar 

  57. OECD (2001) Environmental indicators for agriculture, Vol. 3. Methods and results, vol OECD (Organization for Economic Cooperation and Development). France, Paris

    Google Scholar 

  58. Ossés de Eicker M, Hischier R, Hurni H, Zah R (2010) Using non-local databases for the environmental assessment of industrial activities: the case of Latin America. Environ Impact Assess Rev 30:145–157

    Article  Google Scholar 

  59. Page G, Kelly T, Minor M, Cameron M (2011) Modeling carbon footprints of organic orchard production systems to address carbon trading: an approach based on life cycle assessment. HortScience 46:324–327

    CAS  Google Scholar 

  60. Pathak H, Jain N, Bhatia A, Patel J, Aggarwal P (2010) Carbon footprints of Indian food items. Agric Ecosyst Environ 139:66–73

    Article  Google Scholar 

  61. PE International (2014) GaBi 4 Software system and databases for life cycle engineering. Germany. Available at http://www.gabi-software.com/international/software/gabi-software/

  62. Percival D, Dias G (2014) Energy consumption and greenhouse gas production in wild blueberry production. Acta Hortic (ISHS) 1017:163–168

    Article  Google Scholar 

  63. PRé (2015) SimaPro Database Manual—methods library. PRé Consultants B.V, The Netherlands

    Google Scholar 

  64. Renouf M, Wegener M, Nielsen L (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy 32:1144–1155

    Article  CAS  Google Scholar 

  65. SAG (2013) Agricultura orgánica nacional. Servicio Agrícola y Ganadero (SAG), Ministerio de Agricultura, Santiago, Chile

    Google Scholar 

  66. Salami P, Ahmadi H, Keyhani A (2010) Estimating the equivalent energy for single super phosphate production in Iran. Journal of Scientific Review 2:1–10

    Google Scholar 

  67. Schmidt JH (2007) Life assessment of rapeseed oil and palm oil. Ph. D. thesis, part 3: life cycle inventory of rapeseed oil. Aalborg University, Aalborg, Denmark

  68. Shepherd M, Pearce B, Cormack B et al (2003) An assessment of the environmental impacts of organic farming. A review for DEFRA-funded Project OF0405, London, UK

    Google Scholar 

  69. Stolze M, Piorr A, Häring A, Dabbert S (2000) Environmental impacts of organic farming in Europe. Organic farming in Europe: economics and policy. University of Hohenheim, Stuttgart

    Google Scholar 

  70. Tan RR, Culaba AB, Purvis MR (2002) Application of possibility theory in the life‐cycle inventory assessment of biofuels. Int J Energy Res 26:737–745

    Article  CAS  Google Scholar 

  71. Tukker A (2000) Life cycle assessment as a tool in environmental impact assessment. Environ Impact Assess Rev 20:435–456

    Article  Google Scholar 

  72. UNEP (2000) Agenda 21. Chapter 14: promoting sustainable agriculture and rural development. United Nations Environment Programme (UNEP), New York

    Google Scholar 

  73. Van der Werf H, Gaillard G, Biard Y, Koch P, Basset-Mens C et al (2010) Creation of a public LCA database of French agricultural raw products: Agri-BALYSE. Proceedings of LCA Food, Bari, Italy

  74. Venkat K (2012) Comparison of twelve organic and conventional farming systems: a life cycle greenhouse gas emissions perspective. J Sustainable Agric 36:620–649

    Article  Google Scholar 

  75. Weidema B, Thrane M, Christensen P, Schmidt J, Løkke S (2008) Carbon footprint: a catalyst for life cycle assessment? J Ind Ecol 12:3–6

    Article  Google Scholar 

  76. Wiedmann T, Minx J (2007) A definition of carbon footprint. Ecol Econ Res Trends 2:55–65

    Google Scholar 

Download references

Acknowledgments

The present work was mainly supported by the Chilean Food Processing Research Center (Centro de Estudios en Alimentos Procesados CEAP, Chile), R09I2001. A. Iriarte thanks CONICYT (Chile)-FONDECYT Project N° 11140765 for support his work and part of this study. We thank BioAudita (Chillán, Chile) for establishing contacts with some of the growers, as well as the growers themselves for their help in providing data and their participation in this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alfredo Iriarte.

Additional information

Responsible editor: Matthias Finkbeiner

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cordes, H., Iriarte, A. & Villalobos, P. Evaluating the carbon footprint of Chilean organic blueberry production. Int J Life Cycle Assess 21, 281–292 (2016). https://doi.org/10.1007/s11367-016-1034-8

Download citation

Keywords

  • Blueberry
  • Carbon footprint
  • Chile
  • Life cycle assessment
  • Fruit
  • GHG emissions
  • Land use change
  • Organic agriculture