Longevity pathways in stress resistance: targeting NAD and sirtuins to treat the pathophysiology of hemorrhagic shock

Abstract

Stress resistance correlates with longevity and this pattern has been exploited to help identify genes that can influence lifespan. Reciprocally, genes and pharmacological agents that have been studied primarily in the context of longevity may be an untapped resource for treating acute stresses. Here we summarize the evidence that targeting SIRT1, studied primarily in the context of longevity, can improve outcomes in hemorrhagic shock and resuscitation. Hemorrhagic shock is a potentially fatal condition that occurs when blood loss is so severe that tissues no longer receive adequate oxygen. While stabilizing the blood pressure and reperfusing tissues are necessary, re-introducing oxygen to ischemic tissues generates a burst of reactive oxygen species that can cause secondary tissue damage. Reactive oxygen species not only exacerbate the inflammatory cascade but also can directly damage mitochondria, leading to bioenergetic failure in the affected tissues. Treatments with polyphenol resveratrol and with nicotinamide adenine dinucleotide (NAD) precursors have both shown promising results in rodent models of hemorrhagic shock and resuscitation. Although a number of different mechanisms may be at play in each case, a common theme is that resveratrol and NAD both enhance the activity of SIRT1. Moreover, many of the physiologic improvements observed with resveratrol and NAD precursors are consistent with modulation of known SIRT1 targets. Because small blood vessels and limited blood volume make mice very challenging for the development of hemorrhagic shock models, there is a paucity of direct genetic evidence testing the role of SIRT1. However, the development of more robust methods in mice as well as genetic modifications in rats should allow the study of SIRT1 transgenic and KO rodents in the near future. The potential therapeutic effect of SIRT1 in hemorrhagic shock may serve as an important example supporting the value of considering “longevity” pathways in the mitigation of acute stresses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Ismail K, Nussbaum L, Sebastiani P, Andersen S, Perls T, Barzilai N, et al. Compression of morbidity is observed across cohorts with exceptional longevity. J Am Geriatr Soc. 2016;64(8):1583–91.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104–14.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Anstey KJ, Kingston A, Kiely KM, Luszcz MA, Mitchell P, Jagger C. The influence of smoking, sedentary lifestyle and obesity on cognitive impairment-free life expectancy. Int J Epidemiol. 2014;43(6):1874–83.

    PubMed  Article  Google Scholar 

  4. 4.

    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.

    PubMed  Article  Google Scholar 

  5. 5.

    Rogha M, et al. Cigarette smoking effect on human cochlea responses. Adv Biomed Res. 2015;4:148.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Fernandes TMP, Almeida NL, Santos NAD. Effects of smoking and smoking abstinence on spatial vision in chronic heavy smokers. Sci Rep. 2017;7(1):1690.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Kovac JR, Khanna A, Lipshultz LI. The effects of cigarette smoking on male fertility. Postgrad Med. 2015;127(3):338–41.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Merritt T, Mazela J, Merritt A. Tobacco smoking and its consequences on reproductive health: the impact of a lifestyle choices including cigarette smoke exposure on fertility and birth defects. Przegl Lek. 2013;70(10):779–83.

    PubMed  Google Scholar 

  9. 9.

    Kramer A. An overview of the beneficial effects of exercise on health and performance. Adv Exp Med Biol. 2020;1228:3–22.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Marshall CH, al-Mallah MH, Dardari Z, Brawner CA, Lamerato LE, Keteyian SJ, et al. Cardiorespiratory fitness and incident lung and colorectal cancer in men and women: results from the Henry Ford Exercise Testing (FIT) cohort. Cancer. 2019;125(15):2594–601.

    PubMed  Google Scholar 

  11. 11.

    Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, et al. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;8:14063.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Anderson RM, Weindruch R. The caloric restriction paradigm: implications for healthy human aging. Am J Hum Biol. 2012;24(2):101–6.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Menezes-Filho SL, Amigo I, Prado FM, Ferreira NC, Koike MK, Pinto IFD, et al. Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca(2+)-induced mitochondrial permeability transition. Free Radic Biol Med. 2017;110:219–27.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Zhang J, Zhang W, Gao X, Zhao Y, Chen D, Xu N, et al. Preconditioning with partial caloric restriction confers long-term protection against grey and white matter injury after transient focal ischemia. J Cereb Blood Flow Metab. 2019;39(7):1394–409.

    PubMed  Article  Google Scholar 

  15. 15.

    Gross L, Dreyfuss Y. Prevention of spontaneous and radiation-induced tumors in rats by reduction of food intake. Proc Natl Acad Sci U S A. 1990;87(17):6795–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Harper JM, Salmon AB, Chang Y, Bonkowski M, Bartke A, Miller RA. Stress resistance and aging: influence of genes and nutrition. Mech Ageing Dev. 2006;127(8):687–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Sun D, Muthukumar AR, Lawrence RA, Fernandes G. Effects of calorie restriction on polymicrobial peritonitis induced by cecum ligation and puncture in young C57BL/6 mice. Clin Diagn Lab Immunol. 2001;8(5):1003–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Brandhorst S, Harputlugil E, Mitchell JR, Longo VD. Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res Rev. 2017;39:68–77.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Most J, Gilmore LA, Smith SR, Han H, Ravussin E, Redman LM. Significant improvement in cardiometabolic health in healthy nonobese individuals during caloric restriction-induced weight loss and weight loss maintenance. Am J Physiol Endocrinol Metab. 2018;314(4):E396–405.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kraus WE, Bhapkar M, Huffman KM, Pieper CF, Krupa Das S, Redman LM, et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(9):673–83.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Grigolon RB, Brietzke E, Trevizol AP, McIntyre RS, Mansur RB. Caloric restriction, resting metabolic rate and cognitive performance in non-obese adults: a post-hoc analysis from CALERIE study. J Psychiatr Res. 2020;128:16–22.

    PubMed  Article  Google Scholar 

  22. 22.

    Kennedy BK, Austriaco NR Jr, Zhang J, Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell. 1995;80(3):485–96.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410(6825):227–30.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A. 2004;101(45):15998–6003.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Whitaker R, Faulkner S, Miyokawa R, Burhenn L, Henriksen M, Wood JG, et al. Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner. Aging (Albany NY). 2013;5(9):682–91.

    Article  Google Scholar 

  27. 27.

    Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011;477(7365):482–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Viswanathan M, Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature. 2011;477(7365):E1–2.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Chalkiadaki A, Guarente L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol. 2012;8(5):287–96.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science. 2005;310(5754):1641.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010;143(5):802–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Imai SI, Guarente L. It takes two to tango: NAD(+) and sirtuins in aging/longevity control. NPJ Aging Mech Dis. 2016;2:16017.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Vanzant EL, et al. Advanced age is associated with worsened outcomes and a unique genomic response in severely injured patients with hemorrhagic shock. Crit Care. 2015;19:77.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Cannon J, et al. Resuscitative endovascular balloon occlusion of the aorta (REBOA) for hemorrhagic shock. Mil Med. 2018;183(suppl_2):55–9.

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Chaudry IH. Cellular mechanisms in shock and ischemia and their correction. Am J Phys. 1983;245(2):R117–34.

    CAS  Google Scholar 

  36. 36.

    Peitzman AB, Harbrecht BG, Udekwu AO, Billiar TR, Kelly E, Simmons RL. Hemorrhagic shock. Curr Probl Surg. 1995;32(11):925–1002.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Shenkar R, et al. Hemorrhage activates NF-kappa B in murine lung mononuclear cells in vivo. Am J Phys. 1996;270(5 Pt 1):L729–35.

    CAS  Google Scholar 

  39. 39.

    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Breitenstein A, Stein S, Holy EW, Camici GG, Lohmann C, Akhmedov A, et al. Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells. Cardiovasc Res. 2011;89(2):464–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Liu FC, Tsai HI, Yu HP. Organ-protective effects of red wine extract, resveratrol, in oxidative stress-mediated reperfusion injury. Oxidative Med Cell Longev. 2015;2015:568634.

    Google Scholar 

  43. 43.

    Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Fink MP, Macias CA, Xiao J, Tyurina YY, Delude RL, Greenberger JS, et al. Hemigramicidin-TEMPO conjugates: novel mitochondria-targeted antioxidants. Crit Care Med. 2007;35(9 Suppl):S461–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Powell RD, Goodenow DA, Mixer HV, Mckillop IH, Evans SL. Cytochrome c limits oxidative stress and decreases acidosis in a rat model of hemorrhagic shock and reperfusion injury. J Trauma Acute Care Surg. 2017;82(1):35–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Bowler RP, et al. Extracellular superoxide dismutase attenuates lung injury after hemorrhage. Am J Respir Crit Care Med. 2001;164(2):290–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Kops GJ, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419(6904):316–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Biel TG, Lee S, Flores-Toro JA, Dean JW, Go KL, Lee MH, et al. Sirtuin 1 suppresses mitochondrial dysfunction of ischemic mouse livers in a mitofusin 2-dependent manner. Cell Death Differ. 2016;23(2):279–90.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 2010;122(21):2170–82.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Wang J, Guo M, Ma R, Wu M, Zhang Y. Tetrandrine alleviates cerebral ischemia/reperfusion injury by suppressing NLRP3 inflammasome activation via Sirt-1. PeerJ. 2020;8:e9042.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–6.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013;339(6124):1216–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006;55(8):2180–91.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14(5):661–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148(3):421–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Toiber D, Sebastian C, Mostoslavsky R. Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance. Handb Exp Pharmacol. 2011;206:189–224.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Sims CA, Baur JA. The grapes and wrath: using resveratrol to treat the pathophysiology of hemorrhagic shock. Ann N Y Acad Sci. 2017;1403(1):70–81.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Ayub A, Poulose N, Raju R. Resveratrol improves survival and prolongs life following hemorrhagic shock. Mol Med. 2015;21:305–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Jian B, Yang S, Chaudry IH, Raju R. Resveratrol improves cardiac contractility following trauma-hemorrhage by modulating Sirt1. Mol Med. 2012;18:209–14.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Yu HP, Hsu JC, Hwang TL, Yen CH, Lau YT. Resveratrol attenuates hepatic injury after trauma-hemorrhage via estrogen receptor-related pathway. Shock. 2008;30(3):324–8.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Wang H, Guan Y, Widlund AL, Becker LB, Baur JA, Reilly PM, et al. Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock. J Trauma Acute Care Surg. 2014;77(6):926–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Wang H, et al. Resveratrol rescues kidney mitochondrial function following hemorrhagic shock. Shock. 2015;44(2):173–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Yu HP, Hwang TL, Hsieh PW, Lau YT. Role of estrogen receptor-dependent upregulation of P38 MAPK/heme oxygenase 1 in resveratrol-mediated attenuation of intestinal injury after trauma-hemorrhage. Shock. 2011;35(5):517–23.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Yu HP, Yang SC, Lau YT, Hwang TL. Role of Akt-dependent up-regulation of hemeoxygenase-1 in resveratrol-mediated attenuation of hepatic injury after trauma hemorrhage. Surgery. 2010;148(1):103–9.

    PubMed  Article  Google Scholar 

  70. 70.

    Yu HP, Hwang TL, Hwang TL, Yen CH, Lau YT. Resveratrol prevents endothelial dysfunction and aortic superoxide production after trauma hemorrhage through estrogen receptor-dependent hemeoxygenase-1 pathway. Crit Care Med. 2010;38(4):1147–54.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Halliwell B. Dietary polyphenols: good, bad, or indifferent for your health? Cardiovasc Res. 2007;73(2):341–7.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38(6):864–78.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Jian B, Yang S, Chaudry IH, Raju R. Resveratrol restores sirtuin 1 (SIRT1) activity and pyruvate dehydrogenase kinase 1 (PDK1) expression after hemorrhagic injury in a rat model. Mol Med. 2014;20:10–6.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Poolman TM, et al. Inhibition of the respiratory burst by resveratrol in human monocytes: correlation with inhibition of PI3K signaling. Free Radic Biol Med. 2005;39(1):118–32.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Li P, Wang X, Zhao M, Song R, Zhao KS. Polydatin protects hepatocytes against mitochondrial injury in acute severe hemorrhagic shock via SIRT1-SOD2 pathway. Expert Opin Ther Targets. 2015;19(7):997–1010.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269–78.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Li P, Meng X, Bian H, Burns N, Zhao KS, Song R. Activation of sirtuin 1/3 improves vascular hyporeactivity in severe hemorrhagic shock by alleviation of mitochondrial damage. Oncotarget. 2015;6(35):36998–7011.

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Wang X, Song R, Bian HN, Brunk UT, Zhao M, Zhao KS. Polydatin, a natural polyphenol, protects arterial smooth muscle cells against mitochondrial dysfunction and lysosomal destabilization following hemorrhagic shock. Am J Physiol Regul Integr Comp Physiol. 2012;302(7):R805–14.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Wang X, Song R, Chen Y, Zhao M, Zhao KS. Polydatin—a new mitochondria protector for acute severe hemorrhagic shock treatment. Expert Opin Investig Drugs. 2013;22(2):169–79.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Zeng Z, et al. Polydatin protecting kidneys against hemorrhagic shock-induced mitochondrial dysfunction via SIRT1 activation and p53 deacetylation. Oxidative Med Cell Longev. 2016;2016:1737185.

    Article  CAS  Google Scholar 

  81. 81.

    Zeng Z, et al. Polydatin alleviates small intestine injury during hemorrhagic shock as a SIRT1 activator. Oxidative Med Cell Longev. 2015;2015:965961.

    Google Scholar 

  82. 82.

    Xu S, Zeng Z, Zhao M, Huang Q, Gao Y, Dai X, et al. Evidence for SIRT1 mediated HMGB1 release from kidney cells in the early stages of hemorrhagic shock. Front Physiol. 2019;10:854.

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Chow SE, et al. Resveratrol attenuates oxLDL-stimulated NADPH oxidase activity and protects endothelial cells from oxidative functional damages. J Appl Physiol (1985). 2007;102(4):1520–7.

    CAS  Article  Google Scholar 

  84. 84.

    Olas B, Wachowicz B, Saluk-Juszczak J, Zieliński T. Effect of resveratrol, a natural polyphenolic compound, on platelet activation induced by endotoxin or thrombin. Thromb Res. 2002;107(3–4):141–5.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Powell RD, Swet JH, Kennedy KL, Huynh TT, Mckillop IH, Evans SL. Resveratrol attenuates hypoxic injury in a primary hepatocyte model of hemorrhagic shock and resuscitation. J Trauma Acute Care Surg. 2014;76(2):409–17.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Wu CT, Yu HP, Chung CY, Lau YT, Liao SK. Attenuation of lung inflammation and pro-inflammatory cytokine production by resveratrol following trauma-hemorrhage. Chin J Physiol. 2008;51(6):363–8.

    CAS  PubMed  Google Scholar 

  87. 87.

    Tsai YF, Liu FC, Lau YT, Yu HP. Role of Akt-dependent pathway in resveratrol-mediated cardioprotection after trauma-hemorrhage. J Surg Res. 2012;176(1):171–7.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Canto C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, et al. NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436–43.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Yoshino J, Baur JA, Imai SI. NAD(+) intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513–28.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279(49):50754–63.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem. 2005;280(43):36334–41.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    van Wijk SJ, Hageman GJ. Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radic Biol Med. 2005;39(1):81–90.

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci. 2010;30(8):2967–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Canto C, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Gomes AP, Price NL, Ling AJY, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Gero D, Szabo C. Salvage of nicotinamide adenine dinucleotide plays a critical role in the bioenergetic recovery of post-hypoxic cardiomyocytes. Br J Pharmacol. 2015;172(20):4817–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Wurth MA, Sayeed MM, Baue AE. Nicotinamide adenine dinucleotide (NAD) content of liver with hemorrhagic shock. Proc Soc Exp Biol Med. 1973;144(2):654–8.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Chaudry IH, Zweig S, Sayeed MM, Baue AE. Failure of nicotinamide in the treatment of hemorrhagic shock. J Surg Res. 1976;21(1):27–32.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Jeong KY, Suh GJ, Kwon WY, Kim KS, Jung YS, Kye YC. The therapeutic effect and mechanism of niacin on acute lung injury in a rat model of hemorrhagic shock: down-regulation of the reactive oxygen species-dependent nuclear factor kappaB pathway. J Trauma Acute Care Surg. 2015;79(2):247–55.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Szabo C. Poly (ADP-ribose) polymerase activation and circulatory shock. Novartis Found Symp. 2007;280:92–103 discussion 103–7, 160–4.

    CAS  PubMed  Google Scholar 

  103. 103.

    Yoshino J, Mills KF, Yoon MJ, Imai SI. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res. 2009;105(5):481–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Park JH, Long A, Owens K, Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis. 2016;95:102–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One. 2014;9(6):e98972.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Wang P, Xu TY, Guan YF, Tian WW, Viollet B, Rui YC, et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann Neurol. 2011;69(2):360–74.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Wei CC, Kong YY, Li GQ, Guan YF, Wang P, Miao CY. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci Rep. 2017;7(1):717.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Sims CA, et al. Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight. 2018;3(17):e120182.

    PubMed Central  Article  PubMed  Google Scholar 

  110. 110.

    Subramani K, Chu X, Warren M, Lee M, Lu S, Singh N, et al. Deficiency of metabolite sensing receptor HCA2 impairs the salutary effect of niacin in hemorrhagic shock. Biochim Biophys Acta Mol basis Dis. 2019;1865(3):688–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science. 2009;324(5932):1289–93.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Joo HY, Yun M, Jeong J, Park ER, Shin HJ, Woo SR, et al. SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1alpha (HIF-1alpha) via direct interactions during hypoxia. Biochem Biophys Res Commun. 2015;462(4):294–300.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    MacLeod JB, et al. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55(1):39–44.

    PubMed  Article  Google Scholar 

  115. 115.

    Keevil JG, Osman HE, Reed JD, Folts JD. Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. J Nutr. 2000;130(1):53–6.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Stef G, Csiszar A, Lerea K, Ungvari Z, Veress G. Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J Cardiovasc Pharmacol. 2006;48(2):1–5.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Kirk RI, Deitch JA, Wu JM, Lerea KM. Resveratrol decreases early signaling events in washed platelets but has little effect on platelet in whole blood. Blood Cells Mol Dis. 2000;26(2):144–50.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Johnson WD, Morrissey RL, Usborne AL, Kapetanovic I, Crowell JA, Muzzio M, et al. Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity. Food Chem Toxicol. 2011;49(12):3319–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Vachharajani VT, Liu T, Brown CM, Wang X, Buechler NL, Wells JD, et al. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol. 2014;96(5):785–96.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. 120.

    Patel BP, Safdar A, Raha S, Tarnopolsky MA, Hamadeh MJ. Caloric restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the G93A mouse, an animal model of ALS. PLoS One. 2010;5(2):e9386.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    Starr ME, Steele AM, Cohen DA, Saito H. Short-term dietary restriction rescues mice from lethal abdominal sepsis and endotoxemia and reduces the inflammatory/coagulant potential of adipose tissue. Crit Care Med. 2016;44(7):e509–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Chu X, Schwartz R, Diamond MP, Raju RP. A combination treatment strategy for hemorrhagic shock in a rat model modulates autophagy. Front Med (Lausanne). 2019;6:281.

    Article  Google Scholar 

Download references

Funding

J.A.B. is supported by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases (DK 098656).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Carrie A. Sims or Joseph A. Baur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sims, C.A., Labiner, H.E., Shah, S.S. et al. Longevity pathways in stress resistance: targeting NAD and sirtuins to treat the pathophysiology of hemorrhagic shock. GeroScience (2021). https://doi.org/10.1007/s11357-020-00311-z

Download citation

Keywords

  • Hemorrhagic shock
  • NAD
  • Sirtuins
  • Aging
  • Stress
  • Riboside
  • Nicotinamide
  • Mononucleotide
  • SIRT1
  • Resveratrol