Muscle from aged rats is resistant to mechanotherapy during atrophy and reloading

Abstract

Massage is a viable mechanotherapy to improve protein turnover during disuse atrophy and improve muscle regrowth during recovery from disuse atrophy in adult muscle. Therefore, we investigated whether massage can cause beneficial adaptations in skeletal muscle from aged rats during normal weight-bearing (WB) conditions, hindlimb suspension (HS), or reloading (RE) following HS. Aged (30 months) male Fischer 344/Brown Norway rats were divided into two experiments: (1) WB for 7 days (WB, n = 8), WB with massage (WBM, n = 8), HS for 7 days (HS7, n = 8), or HS with massage (HSM, n = 8), and (2) WB for 14 days (WB14, n = 8), HS for 14 days (HS14, n = 8), reloading (RE, n = 10), or reloading with massage (REM, n = 10) for 7 days following HS. Deuterium oxide (D2O) labeling was used to assess dynamic protein and ribosome turnover in each group and anabolic signaling pathways were assessed. Massage did have an anabolic benefit during RE or WB. In contrast, massage during HS enhanced myofibrillar protein turnover in both the massaged limb and contralateral non-massaged limb compared with HS, but this did not prevent muscle loss. Overall, the data demonstrate that massage is not an effective mechanotherapy for prevention of atrophy during muscle disuse or recovery of muscle mass during reloading in aged rats.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alnaqeeb MA, Al Zaid NS, Goldspink G. Connective tissue changes and physical properties of developing and ageing skeletal muscle. J Anat. 1984;139(Pt 4):677–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Andrushko JW, Gould LA, Farthing JP. Contralateral effects of unilateral training: sparing of muscle strength and size after immobilization. Appl Physiol Nutr Metab. 2018a;43:1131–9. https://doi.org/10.1139/apnm-2018-0073.

    Article  PubMed  Google Scholar 

  3. Andrushko JW, Lanovaz JL, Bjorkman KM, Kontulainen SA, Farthing JP. Unilateral strength training leads to muscle-specific sparing effects during opposite homologous limb immobilization. J Appl Physiol. 2018b;124:866–76. https://doi.org/10.1152/japplphysiol.00971.2017.

    Article  PubMed  Google Scholar 

  4. Baehr LM, Tunzi M, Bodine SC. Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Front Physiol. 2014;5:69. https://doi.org/10.3389/fphys.2014.00069.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barclay RD, Burd NA, Tyler C, Tillin NA, Mackenzie RW. The role of the IGF-1 signaling cascade in muscle protein synthesis and anabolic resistance in aging skeletal muscle. Front Nutr. 2019;6:146. https://doi.org/10.3389/fnut.2019.00146.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bederman IR, Lai N, Shuster J, Henderson L, Ewart S, Cabrera ME. Chronic hindlimb suspension unloading markedly decreases turnover rates of skeletal and cardiac muscle proteins and adipose tissue triglycerides. J Appl Physiol. 2015;119:16–26. https://doi.org/10.1152/japplphysiol.00004.2014.

    CAS  Article  PubMed  Google Scholar 

  7. Bickel CS, Cross JM, Bamman MM. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 2011;43:1177–87. https://doi.org/10.1249/MSS.0b013e318207c15d.

    Article  PubMed  Google Scholar 

  8. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–8. https://doi.org/10.1126/science.1065874.

    CAS  Article  PubMed  Google Scholar 

  9. Bolster DR, Kubica N, Crozier SJ, Williamson DL, Farrell PA, Kimball SR, et al. Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol. 2003;553:213–20. https://doi.org/10.1113/jphysiol.2003.047019.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317:807–10. https://doi.org/10.1126/science.1144090.

    CAS  Article  PubMed  Google Scholar 

  11. Burd NA, Gorissen SH, van Loon LJ. Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev. 2013;41:169–73. https://doi.org/10.1097/JES.0b013e318292f3d5.

    Article  PubMed  Google Scholar 

  12. Busch R, Kim YK, Neese RA, Schade-Serin V, Collins M, Awada M, et al. Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim Biophys Acta. 2006;1760:730–44. https://doi.org/10.1016/j.bbagen.2005.12.023.

    CAS  Article  PubMed  Google Scholar 

  13. Butterfield TA, Zhao Y, Agarwal S, Haq F, Best TM. Cyclic compressive loading facilitates recovery after eccentric exercise. Med Sci Sports Exerc. 2008;40:1289–96. https://doi.org/10.1249/MSS.0b013e31816c4e12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC. Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol. 2006;101:1514–22. https://doi.org/10.1152/japplphysiol.00531.2006.

    Article  PubMed  Google Scholar 

  15. Covinsky KE, Palmer RM, Fortinsky RH, Counsell SR, Stewart AL, Kresevic D, et al. Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: increased vulnerability with age. J Am Geriatr Soc. 2003;51:451–8.

    Article  Google Scholar 

  16. Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, et al. Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab. 2006;290:E731–8. https://doi.org/10.1152/ajpendo.00415.2005.

    CAS  Article  PubMed  Google Scholar 

  17. Drake JC, Peelor FF 3rd, Biela LM, Watkins MK, Miller RA, Hamilton KL, et al. Assessment of mitochondrial biogenesis and mTORC1 signaling during chronic rapamycin feeding in male and female mice. J Gerontol A Biol Sci Med Sci. 2013;68:1493–501. https://doi.org/10.1093/gerona/glt047.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Drake JC, Bruns DR, Peelor FF 3rd, Biela LM, Miller RA, Hamilton KL, et al. Long-lived crowded-litter mice have an age-dependent increase in protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation. Am J Physiol Endocrinol Metab. 2014;307:E813–21. https://doi.org/10.1152/ajpendo.00256.2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Drake JC, Bruns DR, Peelor FF 3rd, Biela LM, Miller RA, Miller BF, et al. Long-lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity. Aging Cell. 2015;14:474–82. https://doi.org/10.1111/acel.12329.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. English KL, Paddon-Jones D. Protecting muscle mass and function in older adults during bed rest. Curr Opin Clin Nutr Metab Care. 2010;13:34–9. https://doi.org/10.1097/MCO.0b013e328333aa66.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fernandez-Gonzalo R, Lundberg TR, Tesch PA. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone. Acta Physiol. 2013;209:283–94. https://doi.org/10.1111/apha.12174.

    CAS  Article  Google Scholar 

  22. Figueiredo VC, McCarthy JJ. Regulation of ribosome biogenesis in skeletal muscle hypertrophy. Physiology. 2019;34:30–42. https://doi.org/10.1152/physiol.00034.2018.

    CAS  Article  PubMed  Google Scholar 

  23. Fluckey JD, Vary TC, Jefferson LS, Evans WJ, Farrell PA. Insulin stimulation of protein synthesis in rat skeletal muscle following resistance exercise is maintained with advancing age. J Gerontol A Biol Sci Med Sci. 1996;51:B323–30. https://doi.org/10.1093/gerona/51a.5.b323.

    CAS  Article  PubMed  Google Scholar 

  24. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, et al. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle. 2011;1:11. https://doi.org/10.1186/2044-5040-1-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Funai K, Parkington JD, Carambula S, Fielding RA. Age-associated decrease in contraction-induced activation of downstream targets of Akt/mTor signaling in skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1080–6. https://doi.org/10.1152/ajpregu.00277.2005.

    CAS  Article  PubMed  Google Scholar 

  26. Gao Y, Kostrominova TY, Faulkner JA, Wineman AS. Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J Biomech. 2008;41:465–9. https://doi.org/10.1016/j.jbiomech.2007.09.021.

    Article  PubMed  Google Scholar 

  27. Gosselin LE, Martinez DA, Vailas AC, Sieck GC. Passive length-force properties of senescent diaphragm: relationship with collagen characteristics. J Appl Physiol. 1994;76:2680–5. https://doi.org/10.1152/jappl.1994.76.6.2680.

    CAS  Article  PubMed  Google Scholar 

  28. Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab. 2017;19(Suppl 1):137–46. https://doi.org/10.1111/dom.13027.

    Article  PubMed  Google Scholar 

  29. Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine. 2013;43:12–21. https://doi.org/10.1007/s12020-012-9751-7.

    CAS  Article  PubMed  Google Scholar 

  30. Haddad F, Adams GR, Bodell PW, Baldwin KM. Isometric resistance exercise fails to counteract skeletal muscle atrophy processes during the initial stages of unloading. J Appl Physiol. 2006;100:433–41. https://doi.org/10.1152/japplphysiol.01203.2005.

    CAS  Article  PubMed  Google Scholar 

  31. Hirani V, Blyth F, Naganathan V, le Couteur DG, Seibel MJ, Waite LM, et al. Sarcopenia is associated with incident disability, institutionalization, and mortality in community-dwelling older men: the concord health and ageing in men project. J Am Med Dir Assoc. 2015;16:607–13. https://doi.org/10.1016/j.jamda.2015.02.006.

    Article  PubMed  Google Scholar 

  32. Hofer T, Marzetti E, Xu J, Seo AY, Gulec S, Knutson MD, et al. Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp Gerontol. 2008;43:563–70. https://doi.org/10.1016/j.exger.2008.02.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Hornberger TA, Mateja RD, Chin ER, Andrews JL, Esser KA. Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle. J Appl Physiol. 2005;98:1562–6. https://doi.org/10.1152/japplphysiol.00870.2004.

    CAS  Article  PubMed  Google Scholar 

  34. Hunt ER, Confides AL, Abshire SM, Dupont-Versteegden EE, Butterfield TA. Massage increases satellite cell number independent of the age-associated alterations in sarcolemma permeability. Physiol Rep. 2019;7(17):e14200. https://doi.org/10.14814/phy2.14200.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Kennedy P, Barnhill E, Gray C, Brown C, van Beek EJR, Roberts N, et al. Magnetic resonance elastography (MRE) shows significant reduction of thigh muscle stiffness in healthy older adults. Geroscience. 2020;42:311–21. https://doi.org/10.1007/s11357-019-00147-2.

    Article  PubMed  Google Scholar 

  36. Kimball SR, O’Malley JP, Anthony JC, Crozier SJ, Jefferson LS. Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: sarcopenia despite elevated protein synthesis. Am J Physiol Endocrinol Metab. 2004;287:E772–80. https://doi.org/10.1152/ajpendo.00535.2003.

    CAS  Article  PubMed  Google Scholar 

  37. Kirby TJ, Lee JD, England JH, Chaillou T, Esser KA, McCarthy JJ. Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis. J Appl Physiol. 2015;119:321–7. https://doi.org/10.1152/japplphysiol.00296.2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Kortebein P. RE: effect of short-term hospitalization on functional capacity in patients not restricted to bed. Am J Phys Med Rehabil. 2008;87:425; author reply 425-426–425; author reply 426. https://doi.org/10.1097/PHM.0b013e31816dd045.

    Article  PubMed  Google Scholar 

  39. Kortebein P, Symons TB, Ferrando A, Paddon-Jones D, Ronsen O, Protas E, et al. Functional impact of 10 days of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci. 2008;63:1076–81.

    Article  Google Scholar 

  40. Kovanen V, Suominen H, Heikkinen E. Collagen of slow twitch and fast twitch muscle fibres in different types of rat skeletal muscle. Eur J Appl Physiol. 1984;52:235–42.

    CAS  Article  Google Scholar 

  41. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol. 2009;587:211–7. https://doi.org/10.1113/jphysiol.2008.164483.

    CAS  Article  PubMed  Google Scholar 

  42. Lagerwaard B, Nieuwenhuizen AG, de Boer VCJ, Keijer J. In vivo assessment of mitochondrial capacity using NIRS in locomotor muscles of young and elderly males with similar physical activity levels. Geroscience. 2020;42:299–310. https://doi.org/10.1007/s11357-019-00145-4.

    Article  PubMed  Google Scholar 

  43. Lawrence MM, Van Pelt DW, Confides AL, Hunt ER, Hettinger ZR, Laurin JL, Reid JJ, Peelor FF 3rd, Butterfield TA, Dupont-Versteegden EE, Miller BF. Massage as a mechanotherapy promotes skeletal muscle protein and ribosomal turnover but does not mitigate muscle atrophy during disuse in adult rats. Acta Physiol. 2020;e13460. https://doi.org/10.1111/apha.13460.

  44. Lee JH, Jun HS. Role of myokines in regulating skeletal muscle mass and function. Front Physiol. 2019;10:42. https://doi.org/10.3389/fphys.2019.00042.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Louis E, Raue U, Yang Y, Jemiolo B, Trappe S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol. 2007;103:1744–51. https://doi.org/10.1152/japplphysiol.00679.2007.

    CAS  Article  PubMed  Google Scholar 

  46. MacDougall JD, Gibala MJ, Tarnopolsky MA, MacDonald JR, Interisano SA, Yarasheski KE. The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol. 1995;20:480–6.

    CAS  Article  Google Scholar 

  47. Magne H, Savary-Auzeloux I, Vazeille E, Claustre A, Attaix D, Anne L, et al. Lack of muscle recovery after immobilization in old rats does not result from a defect in normalization of the ubiquitin-proteasome and the caspase-dependent apoptotic pathways. J Physiol. 2011;589:511–24. https://doi.org/10.1113/jphysiol.2010.201707.

    CAS  Article  PubMed  Google Scholar 

  48. Marino JS, Tausch BJ, Dearth CL, Manacci MV, McLoughlin TJ, Rakyta SJ, et al. Beta2-integrins contribute to skeletal muscle hypertrophy in mice. Am J Physiol Cell Physiol. 2008;295:C1026–36. https://doi.org/10.1152/ajpcell.212.2008.

    CAS  Article  PubMed  Google Scholar 

  49. Marsh AP, Rejeski WJ, Espeland MA, Miller ME, Church TS, Fielding RA, et al. Muscle strength and BMI as predictors of major mobility disability in the Lifestyle Interventions and Independence for Elders Pilot (LIFE-P). J Gerontol A Biol Sci Med Sci. 2011;66:1376–83. https://doi.org/10.1093/gerona/glr158.

    Article  PubMed  Google Scholar 

  50. Mathis AD, Naylor BC, Carson RH, Evans E, Harwell J, Knecht J, et al. Mechanisms of in vivo ribosome maintenance change in response to nutrient signals. Mol Cell Proteomics. 2017;16:243–54. https://doi.org/10.1074/mcp.M116.063255.

    CAS  Article  PubMed  Google Scholar 

  51. Miller BF, Wolff CA, Peelor FF 3rd, Shipman PD, Hamilton KL. Modeling the contribution of individual proteins to mixed skeletal muscle protein synthetic rates over increasing periods of label incorporation. J Appl Physiol. 2015;118:655–61. https://doi.org/10.1152/japplphysiol.00987.2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Miller BF, Hamilton KL, Majeed ZR, Abshire SM, Confides AL, Hayek AM, et al. Enhanced skeletal muscle regrowth and remodelling in massaged and contralateral non-massaged hindlimb. J Physiol. 2018;596:83–103. https://doi.org/10.1113/JP275089.

    CAS  Article  PubMed  Google Scholar 

  53. Miller BF, Baehr LM, Musci RV, Reid JJ, Peelor FF 3rd, Hamilton KL, et al. Muscle-specific changes in protein synthesis with aging and reloading after disuse atrophy. J Cachexia Sarcopenia Muscle. 2019;10:1195–209. https://doi.org/10.1002/jcsm.12470.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moro T, Brightwell CR, Deer RR, Graber TG, Galvan E, Fry CS, et al. Muscle protein anabolic resistance to essential amino acids does not occur in healthy older adults before or after resistance exercise training. J Nutr. 2018;148:900–9. https://doi.org/10.1093/jn/nxy064.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mosoni L, Malmezat T, Valluy MC, Houlier ML, Attaix D, Mirand PP. Lower recovery of muscle protein lost during starvation in old rats despite a stimulation of protein synthesis. Am J Physiol Endocrinol Metab. 1999;277:E608–16. https://doi.org/10.1152/ajpendo.1999.277.4.E608.

    CAS  Article  Google Scholar 

  56. Munn J, Herbert RD, Gandevia SC. Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol. 2004;96:1861–6. https://doi.org/10.1152/japplphysiol.00541.2003.

    CAS  Article  PubMed  Google Scholar 

  57. Munn J, Herbert RD, Hancock MJ, Gandevia SC. Training with unilateral resistance exercise increases contralateral strength. J Appl Physiol. 2005;99:1880–4. https://doi.org/10.1152/japplphysiol.00559.2005.

    Article  PubMed  Google Scholar 

  58. Murach KA, Confides AL, Ho A, Jackson JR, Ghazala LS, Peterson CA, et al. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice. J Physiol. 2017;595:6299–311. https://doi.org/10.1113/JP274611.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE, Aarsland A, et al. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab. 2004;286:E321–8. https://doi.org/10.1152/ajpendo.00368.2003.

    CAS  Article  PubMed  Google Scholar 

  60. Parkington JD, LeBrasseur NK, Siebert AP, Fielding RA. Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol. 2004;97:243–8. https://doi.org/10.1152/japplphysiol.01383.2003.

    CAS  Article  PubMed  Google Scholar 

  61. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Phys. 1997;273:E99–107.

    CAS  Google Scholar 

  62. Rantanen T, Guralnik JM, Sakari-Rantala R, Leveille S, Simonsick EM, Ling S, et al. Disability, physical activity, and muscle strength in older women: the women’s health and aging study. Arch Phys Med Rehabil. 1999;80:130–5.

    CAS  Article  Google Scholar 

  63. Rasmussen BB, Fujita S, Wolfe RR, Mittendorfer B, Roy M, Rowe VL, et al. Insulin resistance of muscle protein metabolism in aging. FASEB J. 2006;20:768–9. https://doi.org/10.1096/fj.05-4607fje.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Roberts MD, Kerksick CM, Dalbo VJ, Hassell SE, Tucker PS, Brown R. Molecular attributes of human skeletal muscle at rest and after unaccustomed exercise: an age comparison. J Strength Cond Res. 2010;24:1161–8. https://doi.org/10.1519/JSC.0b013e3181da786f.

    Article  PubMed  Google Scholar 

  65. Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci. 2013;7:397. https://doi.org/10.3389/fnhum.2013.00397.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sieljacks P, Wang J, Groennebaek T, Rindom E, Jakonsgaard JE, Herskind J, et al. Six weeks of low-load blood flow restricted and high-load resistance exercise training produce similar increases in cumulative myofibrillar protein synthesis and ribosomal biogenesis in healthy males. Front Physiol. 2019;10:649. https://doi.org/10.3389/fphys.2019.00649.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stec MJ, Mayhew DL, Bamman MM. The effects of age and resistance loading on skeletal muscle ribosome biogenesis. J Appl Physiol. 2015;119:851–7. https://doi.org/10.1152/japplphysiol.00489.2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Suetta C. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: influence of ageing and surgery. Dan Med J. 2017;64(8):B5377.

    PubMed  Google Scholar 

  69. Suresh K. An overview of randomization techniques: an unbiased assessment of outcome in clinical research. J Hum Reprod Sci. 2011;4:8–11. https://doi.org/10.4103/0974-1208.82352.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Szulc P, Munoz F, Marchand F, Chapurlat R, Delmas PD. Rapid loss of appendicular skeletal muscle mass is associated with higher all-cause mortality in older men: the prospective MINOS study. Am J Clin Nutr. 2010;91:1227–36. https://doi.org/10.3945/ajcn.2009.28256.

    CAS  Article  PubMed  Google Scholar 

  71. Thomson DM, Gordon SE. Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle. J Physiol. 2006;574:291–305. https://doi.org/10.1113/jphysiol.2006.107490.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Van Pelt DW, Confides AL, Abshire SM, Hunt ER, Dupont-Versteegden EE, Butterfield TA. Age-related responses to a bout of mechanotherapy in skeletal muscle of rats. J Appl Physiol. 2019;127:1782–91. https://doi.org/10.1152/japplphysiol.00641.2019.

    Article  PubMed  Google Scholar 

  73. Waters-Banker C, Butterfield TA, Dupont-Versteegden EE. Immunomodulatory effects of massage on nonperturbed skeletal muscle in rats. J Appl Physiol. 2014;116:164–75. https://doi.org/10.1152/japplphysiol.00573.2013.

    Article  PubMed  Google Scholar 

  74. Wen Y, Murach KA, Vechetti IJ Jr, Fry CS, Vickery C, Peterson CA, et al. MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. J Appl Physiol. 2018;124:40–51. https://doi.org/10.1152/japplphysiol.00762.2017.

    CAS  Article  PubMed  Google Scholar 

  75. West DWD, Marcotte GR, Chason CM, Juo N, Baehr LM, Bodine SC, et al. Normal ribosomal biogenesis but shortened protein synthetic response to acute eccentric resistance exercise in old skeletal muscle. Front Physiol. 2018;9:1915. https://doi.org/10.3389/fphys.2018.01915.

    Article  PubMed  Google Scholar 

  76. White JR, Confides AL, Moore-Reed S, Hoch JM, Dupont-Versteegden EE. Regrowth after skeletal muscle atrophy is impaired in aged rats, despite similar responses in signaling pathways. Exp Gerontol. 2015;64:17–32. https://doi.org/10.1016/j.exger.2015.02.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Whitham M, et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 2018;27:237–251.e4. https://doi.org/10.1016/j.cmet.2017.12.001.

    CAS  Article  PubMed  Google Scholar 

  78. Wood LK, Kayupov E, Gumucio JP, Mendias CL, Claflin DR, Brooks SV. Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. J Appl Physiol. 2014;117:363–9. https://doi.org/10.1152/japplphysiol.00256.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  79. You JS, Anderson GB, Dooley MS, Hornberger TA. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Dis Model Mech. 2015;8:1059–69. https://doi.org/10.1242/dmm.019414.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Availability of data and material

Data available upon request.

Funding

This work was supported by National Institute of Health grants AT009268 and AG042699 (E.D.V, T.B., B.M.). M.L. was supported by a National Institute of Health, National Institute of Aging Training Grant AG052363.

Author information

Affiliations

Authors

Contributions

All experimentation was performed at the University of Kentucky, except for the analysis of protein and RNA synthesis, and western analyses, which were performed at the Oklahoma Medical Research Foundation. M.L. and D.V.P. were responsible for acquisition, analysis, and interpretation of data, and drafting and revising the manuscript. B.M. was responsible for acquisition, analysis, and interpretation of data and for critically revising the manuscript. A.C., E.H., Z.H., J.L., J.R., and F.P. were responsible for acquisition, analysis, and interpretation of data; T.B. and E.D.V. were responsible for conception and design of the experiments, acquisition of data, interpretation of the results, and critically revising the manuscript. All authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Corresponding author

Correspondence to Esther E. Dupont-Versteegden.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

All animal procedures were conducted in accordance with institutional guidelines for the care and use of laboratory animals and were approved by the Institutional Animal Care and Use Committee of the University of Kentucky. The study was conducted in adherence to the NIH Guide for the Care and Use of Laboratory Animals.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Marcus M. Lawrence and Douglas W. Van Pelt are co-first authors.

Electronic supplementary material

ESM 1

(PDF 5634 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lawrence, M.M., Van Pelt, D.W., Confides, A.L. et al. Muscle from aged rats is resistant to mechanotherapy during atrophy and reloading. GeroScience (2020). https://doi.org/10.1007/s11357-020-00215-y

Download citation

Keywords

  • Aging
  • Disuse atrophy
  • Protein turnover
  • Ribosome biogenesis
  • Mechanotherapy